2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 бра и кет векторы
Сообщение10.11.2015, 21:39 
Нужна ваша помощь.

Назовём вектор буквой $x$ принадлежащий векторному действительному пространству, а ковектор буквой $x^*$ принадлежащий дуально-сопряжённому векторному действительному пространству.
(самый важный вопрос 3, но всё же спрошу всё, чтоб был понятен ход моих рассуждений)
1) Правильно ли я понимаю что в метрическом пространстве (пусть евклидовом) существует изоморфизм между векторным пространством и дуальным к нему, и мы можем написать $x=x^*$?
2) Если кроме того, базис в векторном пространстве выбран ортогональным (видимо тогда и в ортогональном пространстве базис будет ортогональным), то мы можем не различать верхние и нижнее индексы?
Заменим действительное пространство на комплексное. $x$ будем теперь называть кетвектором (спинором если размерность пространства = 2), а бравектором (коспинором если размерность пространства = 2).
3) Изоморфизма теперь не существует, в этом и кроется глубокий смысл того, что мы различаем бра и кет вектора (скажем в квантмехе), но по теореме Риса-Фреше можно хотя бы соорудить скалярное произведение, то есть сделать пространство метрическим. Верно?
4) Верхние и нижние индексы не различаем если выбран ортогональный базис. Верно?

Я исхожу из этого пункта

Спасибо.

 
 
 
 Re: бра и кет векторы
Сообщение10.11.2015, 22:05 
Аватара пользователя
illuminates в сообщении #1072144 писал(а):
$x$ будем теперь называть кетвектором (спинором если размерность пространства = 2)

Спиноры - это не просто векторы в двумерном пространстве. Это нечто большее: они преобразуются определённым образом при поворотах физического пространства. И кстати, при этом не все из них имеют комплексную размерность 2 - их на самом деле большой мешок разных. Вы, видимо, подразумеваете спиноры Паули.

illuminates в сообщении #1072144 писал(а):
Изоморфизма теперь не существует

Существует, просто надо кроме замены столбца на строку брать комплексные сопряжения от компонент.

illuminates в сообщении #1072144 писал(а):
Я исхожу из этого пункта

Не читайте рукипедию. Или англопедию, или нормальные учебники, что лучше всего.

 
 
 
 Re: бра и кет векторы
Сообщение12.11.2015, 00:07 
Я, конечно, не специалист, но.
illuminates в сообщении #1072144 писал(а):
1) Правильно ли я понимаю что в метрическом пространстве (пусть евклидовом) существует изоморфизм между векторным пространством и дуальным к нему, и мы можем написать $x=x^*$?

Изоморфизм существует, но написать так нельзя. От того, что между двумя пространствами появился изоморфизм (после выбора базиса), они не станут равными.
Цитата:
3) Изоморфизма теперь не существует

Если перед Вами конечномерное векторное пространство $V$ над любым полем, то любой выбор базиса в $V$ устанавливает изоморфизм между $V$ и двойственным пространством $V^*$ (это типа определение конечномерности). От того, вещественное пространство или комплексное, не зависит вообще ничего.

 
 
 
 Re: бра и кет векторы
Сообщение13.11.2015, 07:18 
Аватара пользователя
apriv в сообщении #1072484 писал(а):
От того, что между двумя пространствами появился изоморфизм (после выбора базиса), они не станут равными.

Изоморфизмы разные бывают. Бывают случайные, т.е. зависящие от выбора базиса (допустим, изоморфизм между $X$ и $X^*$). Бывают и естественные, т.е. не зависящие от выбора базиса (допустим изоморфизм между $X$ и $X^{**}$). Хорошо бы, если бы топикстартер привёл примеры к своим умозаключениям. Иначе непонятно, как он смог всё это вывести из безобидного текста в Википедии.

 
 
 
 Re: бра и кет векторы
Сообщение13.11.2015, 15:17 
Аватара пользователя
мат-ламер в сообщении #1072895 писал(а):
Бывают случайные, т.е. зависящие от выбора базиса (допустим, изоморфизм между $X$ и $X^*$). Бывают и естественные, т.е. не зависящие от выбора базиса (допустим изоморфизм между $X$ и $X^{**}$).

Нельзя ли развернуть эти определения?

 
 
 
 Re: бра и кет векторы
Сообщение14.11.2015, 00:08 
А разгадка проста: сопоставление $V\mapsto V^{**}$ продолжается до ковариантного функтора, а сопоставление $V\mapsto V^*$ продолжается до контравариантного функтора: на самом деле это функтор из категории левых векторных пространств в категорию правых векторных пространств, которая ей противоположна.

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group