Поскольку её идейность заключается ровно в том, что любое отображение в первом приближении линейно. И сжимающие отображения эту идейность подчёркивают, координатная же возня -- запудривает.
Не соглашусь. Доказательство теоремы о неявном отображении методами дифф. исчисления по индукции, если его правильно преподнести, имеет очень наглядный геометрический смысл, и индукция по своей идее очень простая. Геометрический смысл: уравнения, задающие условия связи, задают некоторые поверхности, которые в окрестности рассматриваемой точки представляют собой почти гиперплоскости, значит пересечение эти поверхностей устроено так же, как пересечение гиперплоскостей. Идея индукции: пусть надо систему из
уравнений разрешить относительно переменных
, выразив их через переменные
. По теореме о неявной функции можно разрешить одно из уравнений, пусть последнее,
. Значит, можно ввести новые координаты,
в которых соответствующая поверхность задаётся уравнением
. Тогда остается воспользоваться предположением индукции, рассмотрев вместо исходных поверхностей их пересечения с гиперплоскостью
, т.е. уже
поверхности в
-мерном пространстве.
Недостаток: 1) для обоснования всего этого нужна возня с якобианами 2) теорема получается исключительно конечномерной. Достоинство: наглядность.