Рассматриваются ли наукой такие множества

, что

?
У меня вот возникло предположение (просто взбрело в голову), что множество квадратов является таким. Проверил на компьютере, получил, что если

- минимальное

такое, что

- простое, то

, что, кажется, достаточно мало.
Теорема Дирихле указывает, что множество чисел, кратных некоторому, подходит сюда. Интересно было бы узнать про такие множества с нулевой асимптотической плотностью, и вообще, с как можно меньшей асимптотически функцией распределения. Ясно, что конечным оно быть не может, но насколько маленьким?