еще как существуют
Не-а, не существуют. Вектор - это такая функция (назовем ее параллельным переносом). Сумма векторов - это их композиция. Очевидно что пара векторов - это пара коммутирующих функций, что в общем полностью согласовывается с банальной интуицией.
-- 23.07.2015, 16:20 --Евклид как-то обходился без теории множеств. Как Вам такая простая мысль не пришла в голову, не понимаю.
Евклид жил более 2000 лет назад, и вся его геометрия - это смех сквозь слезы. Взять хотя бы следующую теорему. "Окружность с центром в точке O радиуса r и окружность с центром в точке A радиуса R расположены так, что расстояние от точки O до точки A меньше чем r+R. Утверждение: эти окружности пересекаются." Очевидно, что 5 аксиом Евклида недостаточно, чтобы доказать эту теорему. Ведь нужно еще доказать, что окружность - непрерывна (не содержит щелей).
-- 23.07.2015, 16:24 --Утверждение бессмысленно, поскольку не указан комплект учебников, по которому идет обучение.
Дальнейшее обсуждать без смеха сложно: теория меры, группы, когомологии, теория препятствий в 6-м классе...
Фантастика на 7-м этаже!
Думаю, что можно и без когомологий.
-- 23.07.2015, 16:39 --Ну и что? Вы знаете полные системы аксиом в геометрии?
М-да, чутка затупил... Однако геометрия построенная на аксиоматике Гильберта строга с формальной точки зрения, т.е. все теоремы аккуратно выводятся из данной системы аксиом. [Кстати, есть целая куча других аксиоматик.] К системе аксиом Евклида это никак не относится.