2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Зависимость температуры от плотности тока, формула.
Сообщение22.07.2015, 16:25 
Аватара пользователя


08/08/14
97
Санкт-Петербург
Подскажите пожалуйста формулу зависимости температуры от плотности тока.
К примеру, как на рисунке. Внешний шар пусть "$+$" радиусом $R_2$, а внутренний "$-$" радиусом $R_1$. То есть вопрос в том, насколько нагреется внутренний шар, при определенном напряжении, например, при пробое (когда между обкладками вакуум) или когда между обкладками электролит имеющий сопротивление, к примеру, 1 МОм.

Изображение

Какая известна формула, зависимости температуры от мощности пробоя.
$UI\tau=CmT_r$
Где $U$ - напряжение, $I$ - ток, $\tau$ - время разряда, $C$ - удельная теплоемкость среды между обкладками, $m$ - масса среды между обкладками, $T_r$ - температура разряда. Насколько понятно, эта формула не совсем точная, известно, что при увеличении плотности тока у нас возрастает и температура. Так что прошу поделиться, своей компетентностью.

 Профиль  
                  
 
 Posted automatically
Сообщение22.07.2015, 16:26 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Помогите решить / разобраться (Ф)» в форум «Карантин»
по следующим причинам:

- неправильно набраны обозначения (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);
- отсутствуют собственные содержательные попытки решения задачи.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение22.07.2015, 16:53 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (Ф)»
Причина переноса: не указана.

 Профиль  
                  
 
 Re: Зависимость температуры от плотности тока, формула.
Сообщение22.07.2015, 17:03 
Заслуженный участник


28/12/12
7987
Судя по всему, надо решать задачу теплопроводности с заданным распределением источников (удельная мощность $\lambda j^2$).
Какие характерные времена? Если теплопроводностью можно пренебречь (все происходит быстро), и заряд внутри не накапливается, то зависимость $j(r)$ очевидна ($\operatorname{div}{\bf j}=0$), и тогда вашу формулу можно применять локально с очевидной заменой букв.

 Профиль  
                  
 
 Re: Зависимость температуры от плотности тока, формула.
Сообщение22.07.2015, 20:04 
Аватара пользователя


08/08/14
97
Санкт-Петербург
DimaM

Спасибо за ответ!

Цитата:
Какие характерные времена?
Время вариативно, при пробое, можно задать через формулу $\tau=RC$. А когда электролит, то до того момента, когда температура не дойдет до точки, когда у нас материал расплавится.

Цитата:
Если теплопроводностью можно пренебречь (все происходит быстро), и заряд внутри не накапливается, то зависимость $j(r)$ очевидна ($\operatorname{div}{\bf j}=0$), и тогда вашу формулу можно применять локально с очевидной заменой букв.

Шарики уже заряжены, между ними напряжение. При разном напряжение, будет разная температура на маленьком шарике. В случае с пробоем, напряжение должно быть больше чем электрическая прочность диэлектрика.

Цитата:
удельная мощность $\lambda j^2$
- наверное, имели ввиду удельную тепловую мощность $\omega=\rho j^2$ где $\rho$ - это удельное сопротивление среды (материала маленького шарика).
Тогда думаю да, можно получить отсюда температуру, удельная тепловая мощность также выражается через формулу,
$\omega=\frac{dQ}{dVdt}$, где $dQ$ - это количество теплоты, $dV$ - объем маленького шарика,
$dt$ - время нагрева, а $Q$ выражается через $Q=CmT$, где $C$ - удельная теплоемкость материала маленького шарика, $m$ - его масса, $T$ - температура.
тогда температура в зависимости от плотности тока вероятно примет вид: $T=\frac{Vt\rho j^2}{Cm}$

 Профиль  
                  
 
 Re: Зависимость температуры от плотности тока, формула.
Сообщение23.07.2015, 06:40 
Заслуженный участник


28/12/12
7987
baryshnikov в сообщении #1039582 писал(а):
- наверное, имели ввиду удельную тепловую мощность $\omega=\rho j^2$

Да, конечно.

baryshnikov в сообщении #1039582 писал(а):
тогда температура в зависимости от плотности тока вероятно примет вид: $T=\frac{Vt\rho j^2}{Cm}$

Плотность тока, скорее всего, переменна во времени. Ну и зависит от радиуса, известно как. Поэтому по времени нужен интеграл от, скажем, экспоненциальной зависимости (она получается если электропроводность более-менее постоянна).

 Профиль  
                  
 
 Re: Зависимость температуры от плотности тока, формула.
Сообщение23.07.2015, 10:18 
Аватара пользователя


08/08/14
97
Санкт-Петербург
DimaM в сообщении #1039704 писал(а):
Плотность тока, скорее всего, переменна во времени. Ну и зависит от радиуса, известно как. Поэтому по времени нужен интеграл от, скажем, экспоненциальной зависимости (она получается если электропроводность более-менее постоянна).

Да!
Тогда если интегрировать вероятно формула зависимости температуры от плотности тока примет такой вид:
$$\int\limits_{a}^{b}\frac{Ve^{-t}\rho j^2}{Cm}dt$$
и если материал шарика плавится, т.е. плотность тока увеличивается, объем и масса шарика уменьшается:
$$\int\limits_{a}^{b}\int\limits_{c}^{d}\int\limits_{0}^{f}\int\limits_{0}^{g}\frac{Ve^{-t}\rho j^2}{Cm}dtdjdVdm$$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group