2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 20, 21, 22, 23, 24, 25, 26 ... 47  След.
 
 Re: Модифицировать программу (практическая помощь)
Сообщение20.07.2015, 11:23 
Заслуженный участник
Аватара пользователя


19/12/10
1546
Исправлен баг записи в файл, из-за которого простые числа большие 9223372036854775807 воспринимались как отрицательные числа в дополнительном коде, и в соответствующем виде записывались в файл. https://yadi.sk/d/o04RwW8hsxLWc Иного влияния на программу этот баг не имел.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение21.07.2015, 03:32 
Заслуженный участник


20/08/14
11766
Россия, Москва
Nataly-Mak в сообщении #1038807 писал(а):
Ну, а сколько будет соответствий в массиве, например, из миллиона простых чисел :?:
Я не зря упоминал миллионный интервал, что на нём обязательно будут множество возможных кортежей: все приведённые мною кортежы (паттерны для КПППЧ длиной 17) гарантированно встречаются на интервале в 30030. Некоторые и не по одному разу.
"Гарантированно" в данном случае означает без учёта вычетов по всем остальным простым числам, кроме 2, 3, 5, 7, 11, 13.
Например при учёте вычетов и по 17 каждый из трёх возможных паттернов для КПППЧ длиной 17 и разницей 240 встречается по 4 раза, всего 12 возможных паттернов на полумиллинном интервале. Или больше, это лишь точный минимум. При учёте ещё и вычета по 19 на уже десятимиллионном интервале встретятся не менее 64 возможных паттерна. Строить вычеты ещё и по 21, 29, 31 и т.д. мне что-то лень, количество вариантов будет только увеличиваться.
Для КПППЧ с бОльшей разницей вариантов тоже будет больше.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение21.07.2015, 05:17 
Заслуженный участник


20/08/14
11766
Россия, Москва
Уточнил, при учёте вычетов по 2, 3, 5, 7, 11, 13, 17 паттерн для одной единственной КПППЧ длиной 17 диаметром (с разницей) 240 в интервале полмиллиона встречается 256 раз, т.е. в среднем каждые 2000 чисел.
При учёте ещё и вычета по 19 этот же самый паттерн в интервале уже 10млн встречается 1024 раза, т.е. в среднем каждые 10000 чисел.
При учёте ещё и вычета по 23 этот же самый паттерн в интервале уже 223млн встречается 12288 раз, т.е. в среднем каждые 18000 чисел.
И это только для одного единственного паттерна. А ведь разных паттернов для КПППЧ длиной 17 достаточно много ... И почти наверняка они не будут кучковаться друг около дружки, а плавно размажутся по всему интервалу, что делает поиск КПППЧ по паттернам нерентабельным по сравнению с прямым просеиванием полного интервала. :-(

-- 21.07.2015, 05:19 --

Dmitriy40 в сообщении #1039028 писал(а):
Строить вычеты ещё и по 21, 29, 31 и т.д.
Упс, это конечно же глупая опечатка, следует читать
Цитата:
Строить вычеты ещё и по 23, 29, 31 и т.д.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение21.07.2015, 14:06 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Наконец-то прошло добавление результата для $n=24$ в последовательность A081235; maxal утвердил после неоднократного напоминания (писала в рассылку). Волокитчики однако в OEIS :lol:

Добавил maxal результат и в последовательность A055382.
Пока не вижу этого результата в последовательности A055381.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение21.07.2015, 15:14 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Рассмотрела подробно симметричные кортежи из последовательности A055380.
Последовательность задана центральными элементами кортежей

Код:
5, 18731, 683783, 98303927, 60335249959, 1169769749219, 3945769040699039

Расписала все кортежи:

Код:
k=3
3: 0 2 4
k=5
18713: 0 6 18 30 36
k=7
683747: 0 12 30 36 42 60 72
k=9
98303867: 0 6 30 36 60 84 90 114 120
k=11
60335249851: 0 6 18 30 90 108 126 186 198 210 216
k=13
1169769749111: 0 6 66 78 90 96 108 120 126 138 150 210 216
k=15
3945769040698829: 0 12 18 42 102 138 180 210 240 282 318 378 402 408 420

Кстати, любопытно: почему-то кортеж {0 2 4} в Википедии не приводится.
Нет его и в коллекции k-tuplets от Tony Forbes.
И паттерн содержит все вычеты по модулю 3 :-)
Ну и что? Не понимаю, чем же он невозможен? Да вот и в OEIS он приведён.

Так, господа, срочно нужна 17-ка :wink:
Как она будет выглядеть? И почему её так долго никто не нашёл :?:

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение21.07.2015, 21:01 
Заслуженный участник


20/08/14
11766
Россия, Москва
Nataly-Mak в сообщении #1039153 писал(а):
Кстати, любопытно: почему-то кортеж {0 2 4} в Википедии не приводится.
Нет его и в коллекции k-tuplets от Tony Forbes.
И паттерн содержит все вычеты по модулю 3 :-)
Ну и что? Не понимаю, чем же он невозможен? Да вот и в OEIS он приведён.

Да тем что при любом начальном смещении (разумеется нечётном) одно из этих чисел гарантированно делится на три - т.е. НЕ является простым. Вах. За единственным исключением - числа 3, 5, 7 простые все. Но больше таких не будет никогда. Вот и нет смысла его приводить.
Кортежи из первых простых чисел часто называют тривиальными, они не интересны и найдены все возможные. Соответственно интересны лишь нетривиальные кортежи. Или тривиальные, но не первый.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение21.07.2015, 22:23 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Рассмотрела симметричные кортежи чётной длины в последовательности A081235.
Интересно отметить, что в названии этой последовательности не упоминается k-tuple

Цитата:
A sequence of 2n consecutive primes with symmetrical gaps about the center starts at this prime.

Код:
2, 5, 5, 17, 13, 137, 8021749, 1071065111, 1613902553, 1797595814863, 633925574060671, 22930603692243271

Код:
k=2
2: 0 1 (минимальный диаметр)
k=4
5: 0 2 6 8 (минимальный диаметр)
k=6
5: 0 2 6 8 12 14 (минимальный диаметр)
k=8
17: 0 2 6 12 14 20 24 26 (минимальный диаметр)
k=10
13: 0 4 6 10 16 18 24 28 30 34
k=12
137: 0 2 12 14 20 26 30 36 42 44 54 56
k=14
8021749: 0 4 10 22 40 42 52 72 82 84 102 114 120 124
k=16
1071065111: 0 12 18 26 30 42 56 68 90 102 116 128 132 140 146 158
k=18
1613902553: 0 8 14 20 48 68 74 90 96 98 104 120 126 146 174 180 186 194
k=20
1797595814863: 0 10 34 58 76 78 88 114 148 150 154 156 190 216 226 228 246 270 294 304
k=22
633925574060671: 0 16 40 48 58 112 118 148 156 198 216 232 250 292 300 330 336 390 400 408 432 448
k=24
22930603692243271: 0 70 76 118 136 156 160 178 202 222 238 250 378 390 406 426 450 468 472 492 510 552 558 628

Насчёт минимальности диаметров для $k>8$ ничего не знаю.

Два последних результата найдены в рамках нашего проекта.
Посчастливится ли найти 26-ку? :roll:

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение22.07.2015, 00:42 
Заслуженный участник


20/08/14
11766
Россия, Москва
Немножно наврал я, про КПППЧ длиной 25 и 23, первая имеет минимальный диаметр (разницу) не 396, а 420, диаметром 396 и 408 не проходят по вычетам на 17 и 19.
А вторая имеет минимальный диаметр не 336 (тоже не проходит по вычетам на 17 и 19), а 372.
Минимальные диаметры КПППЧ длиной 13, 15, 17, 19, 21 были указаны верно.
Приношу извинения.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение22.07.2015, 07:05 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Интересно:
КПППЧ длины 8 содержится в КПППЧ длины 10

Код:
k=8
17: 0 2 6 12 14 20 24 26 (минимальный диаметр)
k=10
13: 0 4 6 10 16 18 24 28 30 34

8-ка имеет минимальный диаметр. Можно ли сделать вывод, что 10-ка тоже имеет минимальный диаметр :?:
Что-то никак не соображу :?

Для не симметричных кортежей из последовательных простых чисел при $k=10$ минимальный диаметр равен 32:

Код:
k=10,  s=32,  B={0  2  6  8  12  18  20  26  30  32} -->  {11, 13, 17, 19, 23, 29, 31, 37, 41, 43}

(из коллекции Tony Forbes)

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение22.07.2015, 11:52 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Кто-нибудь знает, есть ли в OEIS последовательность симметричных кортежей (чётной и нечётной длины) с минимальными диаметрами :?:
То есть речь идёт о КПППЧ с минимальными диаметрами, причём о реальных, а не теоретически возможных.
Задала вопрос по рассылке в OEIS, никакого ответа :-(

Здесь уже вроде тоже спрашивала, адресовала вопрос maxal. И тоже нет ответа.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение22.07.2015, 15:38 
Заслуженный участник


20/08/14
11766
Россия, Москва
Nataly-Mak в сообщении #1039380 писал(а):
8-ка имеет минимальный диаметр. Можно ли сделать вывод, что 10-ка тоже имеет минимальный диаметр :?:
В данном случае - да.
В общем случае - нет, нельзя делать такой вывод.
Контрпример: КПППЧ "0 6 12" содержится в КПППЧ "0 18 24 30 48", при этом самая компактная КПППЧ длины 5 - "0 6 18 30 36".
Второй контрпример: КПППЧ "0 12 24 30 42 54 60 72 84" содержится в КПППЧ "0 60 72 84 90 102 114 120 132 144 204", при минимальном диаметре всего 132.
Это всё реальные давно найденные КПППЧ.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение23.07.2015, 17:26 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Nataly-Mak в сообщении #1038797 писал(а):
Эксперимент

Беру два паттерна для КПППЧ длины 17, найденные Begemot82:

Код:
{0 12 30 42 60 72 78 102 120 138 162 168 180 198 210 228 240}
{0 24 42 54 72 84 90 114 132 150 174 180 192 210 222 240 264}

Генерирую простые числа в интервале [1000000, 2000000].
Сгенерировался массив из 70435 простых чисел.
Организую проверку чисел данного массива на наличие КПППЧ, соответствующих заданным паттернам.
Если не напортачила в программе (чем проще программа, тем легче наделать в ней ошибок :-) ), для первого паттерна максимум соответствия - 5 элементов КПППЧ:

Код:
1204669  1204681  1204699  1204711  1204729


Нутром чуяла, что напортачила :-)
Так это и осталось в подсознании, сейчас решила перепроверить. Точно! Один элемент кортежа потеряла. Будет 6 элементов соответствия первому паттерну:

Код:
1204669  1204681  1204699  1204711  1204729  1204741

Уже веселее :D

Получила кортеж длины 17, начинающийся с числа 1204669 в Wolfram Alpha:

Код:
1204669: 0, 12, 30, 42, 60, 72, 112, 114, 118, 144, 154, 190, 202, 204, 214, 222, 268

и увидела, что потеряла один элемент (с разностью 72).
Все остальные элементы правильного кортежа из последовательных простых чисел уже не соответствуют заданному паттерну.

-- Чт июл 23, 2015 18:31:10 --

Nataly-Mak в сообщении #1038797 писал(а):
Продолжила выданный программой набор из 5 элементов для первого паттерна:

Код:
1204669 1204681 1204699 1204711 1204729 1204741 1204747 1204771 1204789 1204807 1204831 1204837 1204849 1204867 1204879 1204897 1204909


Если бы проверила продолжение кортежа, сразу увидела бы потерянный элемент.

-- Чт июл 23, 2015 18:54:35 --

Теперь для второго паттерна

Код:
{0 24 42 54 72 84 90 114 132 150 174 180 192 210 222 240 264}

повторила эксперимент для простых чисел в интервале [2000000,5000000].
Максимум соответствий тоже 6 элементов, это первое решение:

Код:
2429899  2429923  2429941  2429953  2429971  2429983

Сразу на всякий случай проверяю в Wolfram Alpha:

Код:
2429899: 0, 24, 42, 54, 72, 84, 108, 112, 114, 148, 162, 174, 190, 192, 240, 250, 264

А здесь ещё веселее - диаметры кортежей совпали, то есть и последний элемент кортежа правильный (простое число).
Уже 7 совпадений с заданным паттерном.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение24.07.2015, 22:15 
Заслуженный участник


20/08/14
11766
Россия, Москва
Полностью проверен интервал 27е15-28е15, ничего интересного не найдено, квадратов нет.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение25.07.2015, 15:07 


10/07/15
286
Dmitriy40 А какие паттерны для 23 и 25 с минимальными диаметрами 372 и 420?

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение25.07.2015, 15:51 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Begemot82
а программку написать? :wink:
я уже подумываю чуть-чуть, но у меня могзги сейчас в глубокой спячке :-(
А программка-то должна быть ну очень простая!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 695 ]  На страницу Пред.  1 ... 20, 21, 22, 23, 24, 25, 26 ... 47  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group