2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 00:14 
В книге дано утверждение, что если группа Ли абелева, то её алгебра Ли тоже абелева, но без доказательства, видимо, должно быть простое. Но до меня как-то недоходит как доказать.
Пусть $G$ абелева группа Ли, $u, v \in T_e G$, $g,h \in G$. Тогда:
$dL_g dL_h [v,u](f)=dL_h [v,u](f \circ L_g)=v(u(f \circ L_g) \circ L_h) - u(v(f \circ L_g) \circ L_h)= v(u(f \circ L_h) \circ L_g) - u(v(f \circ L_h) \circ L_g)$. Где я использовал, что элементы g,h коммутируют. Что дальше?
Ещё идея доказать, что скобка Ли двух любых векторов в $T_e G$ равна нулю, но в этом случае вроде как нигде не используется, что группа коммутативная. Как здесь быть?

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 09:04 
Алгебра Ли абелевой группы Ли не просто абелевая, а нулевая. Разве нет?

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 09:57 
Почему же, не нулевая. Если бы была нулевая, это означало бы, что каждый касательный вектор в нейтральном элементе группы должен был бы быть равен нулю. Не вижу причин ему быть нулевым. Дальше там же пример абелевой группы по сложению $\mathbb{R}^n$, и её алгебра Ли $\mathbb{R}^n$ c нулевой скобкой Ли

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 10:56 
Аватара пользователя
Глядя по тому, как, собс-но, определяется умножение в алгебре.
Обычно - через предельное выражение, в котором фигурирует отклонение $aba^{-1}b^{-1}$ от единицы.
В случае коммутативной группы это, очевидно, 0.

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 11:24 
Oleg Zubelevich в сообщении #757366 писал(а):
1) Группа Ли $G$ это гладкое многообразие, точки которого можно перемножать и операция умножения удовлетворяет аксиомам группы. Кроме того операция умножения является гладким отображением $G\times G\to G$ . Например группой Ли является $GL(n)$.
2) Рассмотрим $T_eG$ -- касательное пространство к группе $G$ в единице. Пусть $v\in T_eG$ -- какой -нибудь вектор. Через $F_a:G\to G$ обозначим следующую операцию $F_a(f)=af.$ Она называется левым сдвигом.
Вектору $v$ можно поставить в соответствие векторное поле на $G$, делается это следующим образом: $v(x)=dF_x(e)\circ v$.
3) Пусть теперь $u,v\in T_eG$. Этим векторам поставим в соответствие векторные поля $u(x),v(x)$ указанным выше способом, и по определению положим $[u,v]:=[u(x),v(x)](e)$. Можно показать, что будучи снабженным такой операцией пространство $T_eG$ превращается в алгебру Ли. Это алгебра Ли группы $G$.

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 11:35 
Oleg Zubelevich в сообщении #1036084 писал(а):
Oleg Zubelevich в сообщении #757366 писал(а):
1) Группа Ли $G$ это гладкое многообразие, точки которого можно перемножать и операция умножения удовлетворяет аксиомам группы. Кроме того операция умножения является гладким отображением $G\times G\to G$ . Например группой Ли является $GL(n)$.
2) Рассмотрим $T_eG$ -- касательное пространство к группе $G$ в единице. Пусть $v\in T_eG$ -- какой -нибудь вектор. Через $F_a:G\to G$ обозначим следующую операцию $F_a(f)=af.$ Она называется левым сдвигом.
Вектору $v$ можно поставить в соответствие векторное поле на $G$, делается это следующим образом: $v(x)=dF_x(e)\circ v$.
3) Пусть теперь $u,v\in T_eG$. Этим векторам поставим в соответствие векторные поля $u(x),v(x)$ указанным выше способом, и по определению положим $[u,v]:=[u(x),v(x)](e)$. Можно показать, что будучи снабженным такой операцией пространство $T_eG$ превращается в алгебру Ли. Это алгебра Ли группы $G$.


и? У меня же расписано уже, из чего видно, что я понимаю что такое алгебра Ли группы Ли, а тем более, что такое группа Ли

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 11:37 
Braga в сообщении #1036087 писал(а):
У меня же расписано уже, из чего видно, что я понимаю

так это замечательно! а зачем вы сюда пришли тогда, раз понимаете? :mrgreen:

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 11:41 
Oleg Zubelevich в сообщении #1036088 писал(а):
Braga в сообщении #1036087 писал(а):
У меня же расписано уже, из чего видно, что я понимаю

так это замечательно! а зачем вы сюда пришли тогда, раз понимаете? :mrgreen:


Ну так вот я не понимаю как решить КОНКРЕТНУЮ задачу - доказать, почему алгебра Ли абелева у абелевой группы Ли. Свои скудные наработки я показал в первом сообщении

-- 12.07.2015, 12:44 --

Если там где-то ошибка, то буду благодарен, если укажете на нее

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 11:44 
Padawan в сообщении #1036058 писал(а):
Алгебра Ли абелевой группы Ли не просто абелевая, а нулевая.

а что такое нулевая алгебра?

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 11:53 
Oleg Zubelevich в сообщении #1036095 писал(а):
Padawan в сообщении #1036058 писал(а):
Алгебра Ли абелевой группы Ли не просто абелевая, а нулевая.

а что такое нулевая алгебра?



Не забывайте, что это не моё утверждение :-) Может быть Padawan имел в виду, что скобка Ли нулевая, что и есть абелевость, но он об этом забыл.

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 13:00 
а я вам уже говорил
Oleg Zubelevich в сообщении #1033918 писал(а):
когда непонятен инвариантный смысл формул надо расписывать в координатах

введем в малой окрестности единицы локальные координаты, так, что $e=(0,...0)$. Умножение будет иметь вид $(xy)^k=x^k+y^k+b_{ij}^kx^iy^j+...$. Если группа абелева то $b_{ij}^k=b_{ji}^k$.

-- Вс июл 12, 2015 13:01:42 --

$x$ -- элемент группы с координатами $x^i$

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 13:16 
Oleg Zubelevich в сообщении #1036136 писал(а):
Умножение будет иметь вид $(xy)^k=x^k+y^k+b_{ij}^kx^iy^j+...$. Если группа абелева то $b_{ij}^k=b_{ji}^k$.
$x$ -- элемент группы с координатами $x^i$


Мне что-то совсем непонятен вид этой формулы.
Опишите, пожалуйста обозначания, которые вы используете. $(xy)^k=\varphi(xy)_k$ для некоторой карты $(U, \varphi)$? Откуда там появляется плюс и что такое b?

P.S. Вы, наверное, физик? :-) Ваши математические объяснения выглядят как математические объяснения в учебниках для физиков или по физике :-) А не как в учебниках для математиков

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 13:20 
$(xy)^k$ это $k$-я координата элемента $xy$
Braga в сообщении #1036144 писал(а):
Откуда там появляется плюс и что такое b?

про формулу Тейлора слышали?

-- Вс июл 12, 2015 13:21:40 --

Braga в сообщении #1036144 писал(а):
Ваши математические объяснения выглядят как математические объяснения в учебниках для физиков или по физике :-) А не как в учебниках для математиков

а вы не доросли до учебников для математиков, иначе вы тривиальных вопросов не задавали бы

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение12.07.2015, 15:42 
Это разложение - ряд тейлора в единице для произведения двух элементов группы Ли, обычно выводится в любом учебнике - ну а так его легко понять из свойства $x e=x$

 
 
 
 Re: Алгебра Ли абелевой группы Ли
Сообщение13.07.2015, 12:29 
Oleg Zubelevich,Braga
Да, я имел ввиду, что $[u,v]=0$ для любых векторов $u,v\in T_e G$.

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group