2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 неизмеримые множества по Лебегу
Сообщение21.06.2015, 21:13 
Уважаемые коллеги ! Давайте обсудим один вопрос, на который я, к сожалению, не смог найти точный ответ.

Пусть $A\subset {\Bbb R}^n$ - произвольное неизмеримое по Лебегу множество. Возможно ли, что $A$ не содержит никаких измеримых подмножеств положительной меры Лебега ?

Заранее большое спасибо !

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 21:54 
Аватара пользователя
Evgenii2012 в сообщении #1029424 писал(а):
Уважаемые коллеги ! Давайте обсудим один вопрос, на который я, к сожалению, не смог найти точный ответ.

Пусть $A\subset {\Bbb R}^n$ - произвольное неизмеримое по Лебегу множество. Возможно ли, что $A$ не содержит никаких измеримых подмножеств положительной меры Лебега ?

Заранее большое спасибо !


Разумеется, нет! Пример: $A = B \cup C$ где $B\cup C=\emptyset$, $B$ неизмеримо, $C $ измеримо

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 21:59 
Большое спасибо, однако, я не понял Ваш ответ. Если Вы утверждаете, что это невозможно, то это нужно доказать, а не строить пример. Кстати, объединение множеств, одно из которых не пусто, не может быть пустым

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:06 
Аватара пользователя
Содержит ли такие подмножества множество Витали?

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:08 
К сожалению, о множествах Витали мне ничего неизвестно

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:10 
Anton_Peplov в сообщении #1029436 писал(а):
Содержит ли такие подмножества множество Витали?
Нет. А потому ответ ТС --- да.

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:14 
Аватара пользователя
Evgenii2012
Простое рассуждение: возьмём любое неизмеримое множество и вычтем из него объединение всех входящих измеримых подмножеств положительной меры. Что-то ведь должно там остаться?

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:15 
Эти тривиальные вещи я не имел в виду. Речь идёт о следующем: есть некое неизмеримое множество $A,$ (заданное !) у которого есть, конечно, измеримые подмножества - пустое множество, одноточечное и т.д.
Спрашивается: можно ли подобрать измеримое множество $E\subset A$ так, чтобы $m(E)>0$ ? Для нулевой меры это очевидно, а вот для ненулевой пока непонятно.

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:17 
Аватара пользователя
Это может быть, а может и не быть возможно, смотря какое множество.

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:17 
Множество Витали. В нем нет измеримых подмножеств положительной меры. Уже ж написали.
Не знаете, что за множество --- узнайте.

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:19 
Nemiroff в сообщении #1029438 писал(а):
Anton_Peplov в сообщении #1029436 писал(а):
Содержит ли такие подмножества множество Витали?
Нет. А потому ответ ТС --- да.


Вы не могли бы объяснить, почему множества Витали не содержат таких измеримых подмножеств ?

-- 21.06.2015, 21:26 --

Благодарю Вас за ответы, однако, всё это пока лишь наводящие соображения, а вовсе не решение проблемы

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:27 
Аватара пользователя
grizzly в сообщении #1029440 писал(а):
Простое рассуждение: возьмём любое неизмеримое множество и вычтем из него объединение всех входящих измеримых подмножеств положительной меры. Что-то ведь должно там остаться?

А что, объединение любой системы измеримых множеств положительной меры измеримо? Не только конечной или счетной, а любой?

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:32 
Аватара пользователя
Anton_Peplov в сообщении #1029449 писал(а):
А что, объединение любой системы измеримых множеств положительной меры измеримо? Не только конечной или счетной, а любой?

Нет конечно, это была только подсказка. Дальше действуем по обычной схеме -- рассматриваем только попарно непересекающиеся подмножества положительной меры. Таких не может быть более чем счётное число. Их объединение будет принадлежать заданному множеству, которое без них уже не будет иметь подмножеств положительной меры, но всё ещё будет неизмеримым.

С множествами Витали всё ещё проще, если считать, что мы уже умеем их строить.

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:41 
Почему непересекающихся подмножеств положительной меры не более, чем счётно ?

 
 
 
 Re: неизмеримые множества по Лебегу
Сообщение21.06.2015, 22:45 
Аватара пользователя
Ах, Вам нужен пример, что возможно (почему то я прочел "обязательно"). Два примера

1) Вспомним следующее построение примера неизмеримого множества: $[0,1)$ отождествляется с $\mathbb{R}/\mathbb{Z}$ разбивается на счетное число подмножеств, каждое из которых получается из другого сдвигом. Тогда если эти множества измеримы или неизмеримы одновременно, и в первом случае их меры равны. Тогда, ескли их меры равны $0$ то мера $[0,1)$ будет $0$, а если меры $\mu>0$ то мера $[0,1)$ будет $\infty$ (и это противоречие доказывает неизмеримость. Ясно, что ни одно из них не содержит подмножества положительной меры.

2) Пусть $A$ ограничено и неизмеримо, но у него есть подмножества положительной меры. Пусть $\mu$ супремум меры таких подмножеств. Тогда либо существует $B\subset A$ с $\mathsf{mes}(B)=\mu$, либо существуют $B_n\subset A$ т.ч. $\mathsf{mes}(B_n)\to \mu$. Пусть во втором случае $B=\bigcup B_n$. Тогда $B$ измеримо и $\mathsf{mes}(B)=\mu$. Ясно, что $A \setminus B$ искомое множество

 
 
 [ Сообщений: 22 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group