2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 
Сообщение22.02.2008, 15:50 
Супермодератор
Аватара пользователя


29/07/05
8248
Москва
Правильный ответ к задаче единственен и его (вместе с некоторым обоснованием) привел профессор Снэйп в посте от 21 февраля.

 Профиль  
                  
 
 
Сообщение22.02.2008, 16:24 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
PAV писал(а):
Если любого разумного человека спросить, сколькими способами можно заселить двух постояльцев в один двухместный номер, то он без лишних вопросов ответит "одним". А если в два одноместных, то двумя.


А разве не четырьмя?

 Профиль  
                  
 
 
Сообщение22.02.2008, 16:41 
Заслуженный участник
Аватара пользователя


23/08/07
5500
Нов-ск
Профессор Снэйп писал(а):
PAV писал(а):
Если любого разумного человека спросить, сколькими способами можно заселить двух постояльцев в один двухместный номер, то он без лишних вопросов ответит "одним". А если в два одноместных, то двумя.


А разве не четырьмя?

Типа можно на живот разместить, а можно и на спину. Тогда восьмью.

 Профиль  
                  
 
 
Сообщение22.02.2008, 18:28 
Заслуженный участник
Аватара пользователя


21/12/05
5932
Новосибирск
Зачем на живот? У меня сразу тот же вопрос появился - номера им пофиг или нет? Один, скажем, с душем, а в другом холодильника нету. Это всё-таки естественный вопрос - совсем не то, что кидать монету их-под левого колена или из-под правого - в этом вполне согласен с PAV'ом..

 Профиль  
                  
 
 
Сообщение22.02.2008, 23:58 
Заблокирован


16/03/06

932
Цитата:
1. Колода карт насчитывает 52 карты. Сколькими способами можно сдать одному игроку 4 карты?
Решение:
1 вариант
Количество способов, которыми можно сдать 4 карты из 52 найдем по формуле «число размещений»
A(52, 4) = 52!/48! = 52*51*50*49 = 6497400

Вот пример некоректно составленной задачи. Взято из этой же темы "помогите разобраться".. Однако ни кто не протестовал.
Свойств 52х карт в колоде не указано, свойств 4х карт у игрока не указано. Процедура сдачи не описана. Однако задача решена. По формуле. Формула "угадана". Ответ "верный".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 35 ]  На страницу Пред.  1, 2, 3

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group