я хочу разобраться, но учебник-видео-лекции меня пугают (там 29 лекций из MIT часовых нужно просмотреть, чтобы досмотреть до темы разложения матриц, а в учебнике страниц не много но без примеров и прорешки кучи задач двигаться сложно)
надеюсь, у меня не так много вопросов по большому счету осталось
вот основные:
1) Я прочитал, что смысл главных векторов матрицы - это такие направления, которые при действии этой матрицы на что-нибудь другое (вектор или матрицу другую) сохраняются, то есть не поворачиваются, а лишь растягивается или сжимается, при этом коэффициент сжатия/растяжения это соответствующее собственное значение.
Далее, я прочитал, что смысл
PCA - это найти такую новую систему координат, в которой исходные данные выглядят более привлекательно. привлекательность должна быть такая, что типа осей в новой системе координат столько же по числу, сколько и в старой было, но они "упорядочены" в порядке убывания "объяснения" разброса (за показатель дисперсии вроде берется) данных.
то есть первая ось после
PCA проводится так, чтобы если взять только её, то на неё приходилась бы максимальная дисперсия.
Вопрос: как связаны собственные вектора с дисперсией? Почему максимальная дисперсия приходится на ось, проведенную в направлении собственного вектора исходной (пусть корреляционной) матрицы, соответствующему максимальному собственному значению этой корреляционной матрицы? Где тут связь, непонятно.
2) Я прочитал, что с технической точки зрения
PCA - в том, что матрица в центре выражения
является диагональной. Второе, я прочитал, крутость диагональности матрицы в независимости векторов, из которых она состоит (то есть, они делаются независимыми).
Вопрос: что это за вектора такие (в геометрическом или статистическом смысле), которые мы хотим сделать независимыми?
-- Пт июн 05, 2015 00:06:37 --Munin, это не значит, что я линал в руки не возьму, но может пролить для меня свет и вдруг даже смотивировать еще досканальнее понять
над вашим тем и
arseniiv сообщениями я тоже ещё буду медитировать