День добрый. Возникла необходимость взять интеграл следующего вида:
В общем, что предпринималось:
1. Записал в виде действительной части от интеграла с экспонентой.
2. Далее сделал замену
(я думаю, никого не смутит, что я новые переменные так же обозначил). Эти замены не изменят пределы, добавят лишь экспоненту за знаком интеграла, которая пока что слабо интересует.
3. В итоге дело сводится к повторному интегралу:
4. Первостепенной задачей для себя определил взять следующий интеграл:
5. Тут я заметил, что это есть классический интеграл вида:
Тогда, если аналитическое продолжение
на верхней полуплоскости удовлетворяет условиям леммы Жордана и не имеет особых точек на действительной оси, то интеграл есть просто
, где вычеты вычисляются в верхней полуплоскости.
И вот тут я застопорился. Потому что
вроде как функция-то многозначная получается. И единственная особая точка в верхней полуплоскости является, если я правильно понимаю, существенно особой. Я попытался в лоб вычислить вычет, просто разложив всё дело в ряд Лорана. Но, разумеется, у меня нецелая степень никуда не пропала.
Как я понимаю, по уму вообще надо было взять в качестве контура верхнюю полуокружность и обойти при этом единственную особую точку. Тогда у меня как раз получится сумма из шести интегралов, два из которых в пределе дадут то, что мне нужно, два просто уйдут, а ещё два будут представлять интегралы по разным берегам разреза в пределах от 0 до моей особой точки (и наоборот). И здесь я тоже уже как-то начинаю теряться немного.
В общем, вот. Есть мнение, что здесь всё делается в разы проще и элегантнее, но я что-то не могу понять как. Может, как-нибудь по-хитрому надо по параметрам там продифференцировать и получить ЗК (у меня такого придумать не получилось). Может, какую-нибудь замену остроумную надо сделать или ещё чего. Иными словами, хотелось бы узнать:
а) Есть ли какой-нибудь простой способ взятия интеграла?
б) Если да, то какой?
в) Что я делал в своём решении не так?
г) Как надо было делать правильно?