2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки



Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Доказательство теоремы Ферма для степени $n=3$
Сообщение03.12.2016, 17:36 
Аватара пользователя


15/09/13
190
г. Ставрополь
"до первок ощибки"
А это что означает (бан, пургаторий, удаление темы)?

Уважаемая shwedka.
Не уверен в необходимости отделять величины от выражений, в которые эти величины входят. Поэтому попробую обосновать, как вижу. И это не обман, а следствие принятого (способом от противного) допущения, что выражения:
$3(c+2x)(ab-2xc)=(2x)^3$ (5)
$3(c_1+2)(a_1 b_1 - 2 c_1)=2^3$ (6)
- верные равенства.
Или иначе:
$Y_x = 8X + Z_x$
$Y_1 = 8X_1 + Z_1$,
где $Z_1 = Z_x = 0$, $X=x^3$, $Y_x=3(c+2x)(ab-2xc)=(2x)^3+Z_x$
И, наоборот, никакой линейной зависимости, если (6) и (5) на самом деле неравенства:
$Y_x > 8X$
$Y_1 > 8X_1$,
Так как могут быть преобразованы в верные равенства:
$Y_x = 8X + Z_1X$
$Y_1 = 8X_1 + Z_1$,
где $Z_1\neq Z_x\neq0$, $X=x^3$.
То есть во втором случае, в отличие от изначально принятого предположения, точки графиков $Y=3(c+2x)(ab-2xc)$ и $Y=(2x)^3$ при фиксированных значениях $x_1$ и $x$ попарно не совпадают, когда $a,b,c,x$ - натуральные числа.
То есть
$c^3>(a^3+b^3)$,
$ a^{3}+b^{3} \neq c^{3} $.

Поэтому же:
$\sum\limits_{x=1}^{\infty}3(c+2x)(ab-2xc)-(2x)^3$ = $\sum\limits_{x=1}^{\infty}[c_1^3-(a_1^3+b_1^3)]x^3$ - расходящийся ряд,
когда $ a^{3}+b^{3} \neq c^{3} $ и $c^3>a^3+b^3$ (согласно ОДЗ).

-- 03.12.2016, 18:06 --

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени $n=3$
Сообщение03.12.2016, 19:12 
Заслуженный участник
Аватара пользователя


11/12/05
3453
Швеция
vxv в сообщении #1173954 писал(а):
Не уверен в необходимости отделять величины от выражений, в которые эти величины входят. Поэтому попробую обосновать, как вижу. И это не обман, а следствие принятого (способом от противного) допущения, что выражения:
$3(c+2x)(ab-2xc)=(2x)^3$ (5)
$3(c_1+2)(a_1 b_1 - 2 c_1)=2^3$ (6)
- верные равенства.

И снова спрашивю, что за числа $a_1,b_1,c_1$, как они связаны с $a,b,c$??

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени $n=3$
Сообщение06.12.2016, 05:18 


27/03/12
344
г. новосибирск
Уважаемый vxv! Я допустил ошибку. Прошу прощения.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group