2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 линейное ДУ в ЧП
Сообщение18.03.2015, 14:14 
День добрый.
Есть линейное диф. уравнение вида $F(x_1,x_2,f_1(x_1),f_2(x_2),\partial f_1 /\ \partial x_1)=0$.
Посоветуйте, пожалуйста, соответствующую литературу.

 
 
 
 Posted automatically
Сообщение18.03.2015, 14:59 
Аватара пользователя
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

galoperidol
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 
 
 
 Posted automatically
Сообщение20.03.2015, 03:52 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: линейное ДУ в ЧП
Сообщение20.03.2015, 09:25 
Аватара пользователя
Неплохо бы какую-то информацию про $F$.
Если ничего нет, то тогда так: рещаем уравнение относительно $\frac {\partial f_1} {\partial x_1}$:
$\frac {\partial f_1} {\partial x_1}=\Phi(x_1,x_2,f_1,f_2)$,
то, что получилось, дифференцируем по $x_2$ (левая часть пропадает), результат разрешаем относительно $\frac {\partial f_2} {\partial x_2}$, после чего дифференцируем по $x_1$ - получится (после подстановки выражения для $\frac {\partial f_1} {\partial x_1}$) выражение вида
$\Psi(x_1,x_2,f_1,f_2)=0$.
Отсюда выражаем $f_1$, подставляем в выражение для $\frac {\partial f_1} {\partial x_1}$ и т.д.
В итоге получится условие на $F$, при котором Ваше уравнение будет совместным.
Как-то так.

(Оффтоп)

Вы, кстати, уверены, что не ошиблись? Странное какое-то уравнение..

 
 
 
 Re: линейное ДУ в ЧП
Сообщение20.03.2015, 14:29 
Аватара пользователя
Линейное... отчего бы тогда не записать в более явном виде?
И нет производной $\frac {\partial f_2} {\partial x_2}$. Просто описка?

 
 
 
 Re: линейное ДУ в ЧП
Сообщение27.03.2015, 07:54 
Спасибо за ответы, немного помогло, оказалось совместного решения, видимо, нет.
Опечаток не было :-)

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group