2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Вывод объема шара через интеграл.
Сообщение09.03.2015, 20:15 
Ясно, что можно рассмотреть объем как сумму площадей сфер. Там будет просто $V=\int_0^R 4\pi x^2dx=\dfrac{4}{3}\pi R^3$.

Но а если шар разрезать на бесконечное число кругов параллельными плоскостями, то есть просто порезать его?
Получатся круги, с площадьми $\pi x^2$, тогда можно рассмотреть половину шара, ее объем $\int_0^R \pi x^2 dx=\dfrac{\pi R^3}3$. У второй половинки такой же объем, потому объем шара получается в $\dfrac{2}{3}\pi R^3$

Почему так получается, где тут глюк?

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение09.03.2015, 20:19 
integral2009 в сообщении #987889 писал(а):
Почему так получается, где тут глюк?
Потому что $dx$ не тот (во втором случае).

Кстати, по поводу нашинковать шар --- см. у Архимеда, который по-простому, без интегралов.

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение09.03.2015, 20:22 
nnosipov в сообщении #987894 писал(а):
integral2009 в сообщении #987889 писал(а):
Почему так получается, где тут глюк?
Потому что $dx$ не тот (во втором случае).


А почему не тот, как сделать тем?)

(Оффтоп)

$dx$ уже не тот?)) :D

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение09.03.2015, 20:25 
integral2009 в сообщении #987895 писал(а):
А почему не тот, как сделать тем?)
Вы школьник или студент? Если последнее, то уж как-нибудь сообразите сами. Про интегральные суммы вспомните, например.

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение09.03.2015, 20:33 
Аватара пользователя
Попробуйте найти объем тела вращения, образованного полуокружностью.

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение09.03.2015, 20:43 
Аватара пользователя
integral2009 в сообщении #987895 писал(а):
А почему не тот, как сделать тем?)

Четко описать, на какой "высоте" находится сечение и каков его радиус. А что обозначено за $x$?

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение09.03.2015, 21:24 
А теперь все ясно, что-то я затупил конкретно. Можно найти объем сегмента с высотой $h$. $V=\pi \int_0^H (2Rx-x^2)dx=\pi H^2(R-H/3)$. В этой формуле можно взять $H=R$, тогда будет половина объема шара.

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение10.03.2015, 00:16 

(Оффтоп)

nnosipov в сообщении #987894 писал(а):
по поводу нашинковать шар --- см. у Архимеда, который по-простому, без интегралов.

У Архимеда по-простому была нашинкована площадь, а не объём.

 
 
 
 Re: Вывод объема шара через интеграл.
Сообщение10.03.2015, 07:27 
ewert в сообщении #987997 писал(а):

(Оффтоп)

nnosipov в сообщении #987894 писал(а):
по поводу нашинковать шар --- см. у Архимеда, который по-простому, без интегралов.

У Архимеда по-простому была нашинкована площадь, а не объём.

(Оффтоп)

И объём тоже. Формально без интегралов нельзя (третья проблема Гильберта), но это не значит, что их обязательно нужно писать.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group