2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Множества
Сообщение28.01.2015, 05:40 
Простая задача: найти все множества $A$ и $B$, для которых выполняется: $A \times B=B \times A$.
Ну понятное дело что это выполняется когда $A=B$, а вот как это доказать?
Решение: пусть $(a,b) \in A \times B$, тогда $a \in A$, $b \in B$. Т. к. $A \times B=B \times A$, то $a \in B$ и $b \in A$, следовательно $a \in A \cap B$, $b \in A \cap B$, тупик :shock:

Тоже вроде не сложная, но не совсем понятная: Пусть $A \subset X$, $B \subset Y$, выразить $\overline {A \times B}$ через $A, \overline {A}, B, \overline {B}$.
Тоже очевидно что $\overline {A \times B}=A \times \overline {B}+\overline {A} \times B + \overline {A} \times \overline {B}$, но доказать не получается, не знаю как подступиться :-(

 
 
 
 Re: Множества
Сообщение28.01.2015, 07:49 
Аватара пользователя
kojirh в сообщении #969770 писал(а):
$a \in A$ ... то $a \in B$
Какой тут квантор? Что это означает? Аналогично
kojirh в сообщении #969770 писал(а):
$b \in B$... то $b \in A$,

 
 
 
 Re: Множества
Сообщение28.01.2015, 16:30 
provincialka в сообщении #969778 писал(а):
kojirh в сообщении #969770 писал(а):
$a \in A$ ... то $a \in B$
Какой тут квантор? Что это означает? Аналогично
kojirh в сообщении #969770 писал(а):
$b \in B$... то $b \in A$,


Ладно давайте так, первое задание: если $A=B$, то $A \times B=B \times A$ можно переписать как $A^2=A^2$, равенство выполняется. Теперь пусть $A \ne B$, тогда существует $a \in A, a \notin B, b \in B$, тогда $(a,b) \subset A \times B$ и, т. к. $A \times B=B \times A$, то $(a,b) \subset B \times A$ - противоречие

 
 
 
 Re: Множества
Сообщение28.01.2015, 16:36 
Аватара пользователя
kojirh в сообщении #970061 писал(а):
Теперь пусть $A \ne B$, тогда существует $a \in A, a \notin B, b \in B$,

Возможная ошибка в самой последней посылке. И кстати в
kojirh в сообщении #970061 писал(а):
$(a,b) \subset A \times B$
$\subset$ замените на $\in$

 
 
 
 Re: Множества
Сообщение28.01.2015, 17:17 
Аватара пользователя
kojirh в сообщении #970061 писал(а):
Ладно давайте так, первое задание:

А вот почему вы на мой вопрос не ответили? Там же все решение уже было, только добавить "для любого".

 
 
 
 Re: Множества
Сообщение28.01.2015, 17:52 
provincialka в сообщении #970097 писал(а):
kojirh в сообщении #970061 писал(а):
Ладно давайте так, первое задание:

А вот почему вы на мой вопрос не ответили? Там же все решение уже было, только добавить "для любого".


Сам не знаю, автоматически подумал что решение не верно. :-) Окончательное решение вышло такое:
Изображение


Помогите пожалуйста по второй задаче: т. к. $X=A+\overline A$ и $Y=B+\overline B$, то $X \times Y=(A+\overline A) \times (B+\overline B)=A \times B+A \times \overline B+\overline A \times B+\overline A \times \overline B$ $\to$ $\overline {A \times B} = (X \times Y) \backslash (A \times B)=A \times \overline B+\overline A \times B+\overline A \times \overline B$, такое решение подойдёт?

 
 
 
 Re: Множества
Сообщение28.01.2015, 17:59 
Аватара пользователя
Вот теперь верно.

По второй задаче.
1) Каждую задачу следует писать в отдельную тему.
2) Не следует использовать знак $+$ для объединения (используйте $\cup$ \cup)
3) Не стоит использовать знак \bar для дополнения (или по крайней мере оговаривать): он зарезервирован для замыкания; в логике обычно $\neg{A}$, а в ТМ $\complement A$ (\neg и \complement)

 
 
 
 Re: Множества
Сообщение28.01.2015, 18:03 
Red_Herring в сообщении #970126 писал(а):
Вот теперь верно.

По второй задаче.
1) Каждую задачу следует писать в отдельную тему.
2) Не следует использовать знак $+$ для объединения (используйте $\cup$ \cup)
3) Не стоит использовать знак $\bar{\ }$ для дополнения (или по крайней мере оговаривать): он зарезервирован для замыкания


Хорошо, всё учту, спасибо большое! :D

 
 
 
 Re: Множества
Сообщение28.01.2015, 19:27 
Аватара пользователя

(Оффтоп)

Red_Herring в сообщении #970126 писал(а):
3) Не стоит использовать знак \bar для дополнения (или по крайней мере оговаривать): он зарезервирован для замыкания; в логике обычно $\neg{A}$, а в ТМ $\complement A$ (\neg и \complement)

Это Вы вероятностникам расскажите.

 
 
 
 Re: Множества
Сообщение29.01.2015, 18:30 
kojirh
По-моему вы дважды доказали одно и то же для непустых множеств. Всё можно сделать проще
$\forall(a,b)((a,b) \in A \times B\Rightarrow (a,b) \in B \times A)$
Это значит, что
$\forall a,b((a\in A\Rightarrow a\in B)\wedge(b\in B\Rightarrow b\in A))$
Поэтому в силу произвольности выбора элементов $a$ и $b$
$A\subseteq B$ и $B\subseteq A$ откуда следует равенство множеств.

Зачем вам потребовалось дважды повторять одну мысль - это мне не понятно.

 
 
 
 Re: Множества
Сообщение29.01.2015, 18:33 
Аватара пользователя
Kras
Я тоже сначала так думала. Но рассуждение становится верным, только если пара $(a, b)$ существует для каждого $a \in A$ (соотв., для каждого $b\in B$). Это требует непустоты второго множества. Если же хотя бы одно из множеств пусто, второе может быть произвольным.

 
 
 
 Re: Множества
Сообщение29.01.2015, 19:01 
А случай, когда произведение пустое, он вообще здесь не разобран. Тут в доказательстве дважды говорится $a\in A, b\in B$. Тут надо помнить, что ни один элемент не принадлежит пустому множеству. Такое же, но более короткое доказательство привёл я.
provincialka в сообщении #970665 писал(а):
Если же хотя бы одно из множеств пусто, второе может быть произвольным.

Да. Тогда получается, что $A \times B=B \times A=\varnothing$. Второе множество уже роли не играет.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group