2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Существование целого решения у системы уравнений
Сообщение28.01.2015, 00:22 
Дана такая система:
$\left\{
\begin{array}{rcl}
 2^{2014} \cdot a + 2^{14} \cdot b + 4 \cdot c + 2 \cdot d + e =5 \\
 5^{2014} \cdot a + 5^{14} \cdot b + 25 \cdot c + 5 \cdot d + e=7 \\
\end{array}
\right.$
Доказать что у неё нет целых решений. Не знаю как решать, пробовал заменять коэффициенты на их остатки по модулю сначала 2, потом 7, но в обоих случаях решение существовало. Какие ещё способы есть?

 
 
 
 Re: Существование целого решения у системы уравнений
Сообщение28.01.2015, 00:30 
Аватара пользователя
Есть ещё способ тупо решить её и посмотреть, что будет. Ну, знаете, как решают. Как если бы все числа были не безумные, а решение было. Может, тогда станет ясно, какие есть на свете числа, кроме 2 и 7.

 
 
 
 Re: Существование целого решения у системы уравнений
Сообщение28.01.2015, 00:36 
Там же пять неизвестных, а уравнения всего два. Её просто так не решить.

 
 
 
 Re: Существование целого решения у системы уравнений
Сообщение28.01.2015, 00:47 
Аватара пользователя
Ну тогда вот Вам и ответ. Если вообще не решить, значит, никаких решений нет, а не только целых. Годится?

 
 
 
 Re: Существование целого решения у системы уравнений
Сообщение28.01.2015, 00:51 
Вроде бы получилось. Если заменить все коэффициенты на их остатки по модулю пять, то в первом уравнении получается что сумма чётных чисел равна нечётному числу. Фух... :mrgreen:

(Оффтоп)

можете мне объяснить, пожалуйста, почему при разных модулях получается разный результат? Т.е. почему в каких-то полях остатков эта система имеет решение, а в каких-то нет?

 
 
 
 Re: Существование целого решения у системы уравнений
Сообщение28.01.2015, 01:15 
Аватара пользователя
Если заменить всё на остатки по модулю пять, то становится правдой равенство 5=0, делающее бессмысленным противопоставление чётных и нечётных чисел. Если это я слишком сложно сказал, попробуйте применить в точности тот же самый метод к решению в целых числах уравнения $2x+2y+1=5$. Замените все коэффициенты на остатки по модулю пять. Замените их, да.

-- менее минуты назад --

Rock`n`Rolla в сообщении #969727 писал(а):
можете мне объяснить, пожалуйста, почему при разных модулях получается разный результат?
Потому что там на самом деле разный результат. По-моему, это достаточно базисный факт, не требующий обоснований. Ну в самом деле, почему при делении 60 на разные числа получается разный результат: иной раз делится, а иной раз, говорят, нет!?

 
 
 
 Re: Существование целого решения у системы уравнений
Сообщение28.01.2015, 01:48 
Rock`n`Rolla в сообщении #969715 писал(а):
пробовал заменять коэффициенты на их остатки по модулю сначала 2, потом 7, но в обоих случаях решение существовало

Ну а какие-нибудь другие маленькие модули попробовать?

 
 
 
 Re: Существование целого решения у системы уравнений
Сообщение28.01.2015, 02:07 
12d3 в сообщении #969739 писал(а):
Ну а какие-нибудь другие маленькие модули попробовать?
А если быть проще? ИСН дал хороший совет:
ИСН в сообщении #969717 писал(а):
Есть ещё способ тупо решить её и посмотреть, что будет.
Как обычно решают уравнения? Ну вычтите, например, первое из второго. Получившееся ни на какие мысли не наводит?

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group