2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 15:15 
1) На плоскости даны $2000$ точек и окружность радиуса $1$. Докажите, что на окружности найдется точка, сумма расстояний от которой до $2000$ данных точек более $2000$.
Если соединить эти $2000$ точек с данной точкой и между собой, то используя неравенство треугольника -- удвоенная сумма расстояний от точки на окружности до $2000$ точек будет больше, чем длина ломанной, соединяющей эти $2000$ точек между собой. Пока что только такая идея есть. А дальше что еще можно использовать? Я так понимаю, что в задаче подразумевается, что для любой конфигурации $2000$ точек?
2) Найти все положительные x, такие, что $\left\{\dfrac{[x]}{x}\right\}+\left[\dfrac{\{x\}}{x}\right]=1$

Я только пока что понимаю, что $\left\{\dfrac{[x]}{x}\right\}=\dfrac{[x]}{x}$, потому как $\dfrac{[x]}{x}<1$ и $\dfrac{\{x\}}{x}<1$, потому $\left[\dfrac{\{x\}}{x}\right]=0$, значит $\left\{\dfrac{[x]}{x}\right\}=1$, но такого быть не может ,потому как $\left\{\dfrac{[x]}{x}\right\}<1$, то есть таких $x$ нет? Верно?

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 15:19 
Andrei94 в сообщении #968618 писал(а):
Я только пока что понимаю, что $\left\{\dfrac{[x]}{x}\right\}=\dfrac{[x]}{x}$, потому как $\dfrac{[x]}{x}<1$ ...
Последнее неравенство верно, но не всегда.

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 15:20 
Аватара пользователя
Andrei94 в сообщении #968618 писал(а):
$\dfrac{\{x\}}{x}<1$

Это тоже не всегда верно.

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 16:34 
Аватара пользователя
Andrei94 в сообщении #968618 писал(а):
удвоенная сумма расстояний от точки на окружности до $2000$ точек будет больше, чем длина ломанной, соединяющей эти $2000$ точек между собой
Это, положим, годная идея в случае, если длина ломаной составляет 4000. А если она внезапно 40? Или вообще 0.4?
Надо как-то не так. Может, доказать то же самое для одной точки? Только у неё это "то же самое" будет совсем другое. Ну, типа, посчитать среднее расстояние от точки до всей окружности. Если среднее - вот такое, то хоть где-нибудь да выйдет больше...

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 18:54 
Неравенство $\dfrac{[x]}{x}<1$ выполняется для всех положительных нецелых $x$, тк для положительных $x$ получаем $[x]<x$, что, безусловно, верно.

$\dfrac{\{x\}}{x}<1$ выполняется для всех положительных $x$, так как $\{x\}<x$, что, безусловно, верно.

Разве неверно в такой постановке?

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 19:05 
Andrei94 в сообщении #968724 писал(а):
$\dfrac{\{x\}}{x}<1$ выполняется для всех положительных $x$, так как $\{x\}<x$, что, безусловно, верно.
Угу, особенно для $x=1/2$ (например).

-- Пн янв 26, 2015 23:06:24 --

Andrei94 в сообщении #968724 писал(а):
Неравенство $\dfrac{[x]}{x}<1$ выполняется для всех положительных нецелых $x$, тк для положительных $x$ получаем $[x]<x$, что, безусловно, верно.
Это верно. Но ведь целые $x$ тоже люди. Как с ними-то быть?

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 19:07 
ИСН в сообщении #968649 писал(а):
Andrei94 в сообщении #968618 писал(а):
удвоенная сумма расстояний от точки на окружности до $2000$ точек будет больше, чем длина ломанной, соединяющей эти $2000$ точек между собой
Это, положим, годная идея в случае, если длина ломаной составляет 4000. А если она внезапно 40? Или вообще 0.4?
Надо как-то не так. Может, доказать то же самое для одной точки? Только у неё это "то же самое" будет совсем другое. Ну, типа, посчитать среднее расстояние от точки до всей окружности. Если среднее - вот такое, то хоть где-нибудь да выйдет больше...


Там эллипс будет?

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 19:52 
Аватара пользователя
Andrei94 в сообщении #968618 писал(а):
1) На плоскости даны $2000$ точек и окружность радиуса $1$. Докажите, что на окружности найдется точка, сумма расстояний от которой до $2000$ данных точек более $2000$.

Рассмотрите различные варианты расположения точек и окружности. Точки могут быть внутри круга, на окружности, за пределами круга. Что Вам кажется наиболее сложным?
Это всё только для общего понимания задачи. А самое сложное здесь не переборщить с подсказкой. Как это всё совместить одним решением? Может, спроецировать куда-то все эти точки?

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение26.01.2015, 21:11 
Аватара пользователя
Andrei94 в сообщении #968740 писал(а):
Там эллипс будет?
Где? У нас была задача про белых кроликов; откуда вдруг, почему, и в каком качестве там мог бы появиться эллипс (или, for that matter, любая другая геометрическая фигура)?

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение27.01.2015, 00:45 
nnosipov в сообщении #968738 писал(а):
Andrei94 в сообщении #968724 писал(а):
$\dfrac{\{x\}}{x}<1$ выполняется для всех положительных $x$, так как $\{x\}<x$, что, безусловно, верно.
Угу, особенно для $x=1/2$ (например).

-- Пн янв 26, 2015 23:06:24 --

Andrei94 в сообщении #968724 писал(а):
Неравенство $\dfrac{[x]}{x}<1$ выполняется для всех положительных нецелых $x$, тк для положительных $x$ получаем $[x]<x$, что, безусловно, верно.
Это верно. Но ведь целые $x$ тоже люди. Как с ними-то быть?


Да, был не прав, спасибо.

$\left\{\dfrac{[x]}{x}\right\}=\dfrac{[x]}{x}$, потому как $\dfrac{[x]}{x}\le1$ и $\dfrac{\{x\}}{x}\le1$, потому $\left[\dfrac{\{x\}}{x}\right]=0$, значит $\left\{\dfrac{[x]}{x}\right\}=1$, но такого быть не может ,потому как $\left\{\dfrac{[x]}{x}\right\}\le 1$, то есть таких $x$ нет? Верно?

-- 27.01.2015, 00:52 --

ИСН в сообщении #968649 писал(а):
Andrei94 в сообщении #968618 писал(а):
удвоенная сумма расстояний от точки на окружности до $2000$ точек будет больше, чем длина ломанной, соединяющей эти $2000$ точек между собой
Это, положим, годная идея в случае, если длина ломаной составляет 4000. А если она внезапно 40? Или вообще 0.4?
Надо как-то не так. Может, доказать то же самое для одной точки? Только у неё это "то же самое" будет совсем другое. Ну, типа, посчитать среднее расстояние от точки до всей окружности. Если среднее - вот такое, то хоть где-нибудь да выйдет больше...


Для 1 точки. Если эта точка лежит вне круга радиуса 2 с центром в той же точке, что и окружность, то расстояние будет больше 1.
Если в кольце между 2 окружностями, то проведем прямую через данную точку и через центр окружности, дальняя точка пересечения с окружностью данной в условии будет находится на расстоянии, большем, чем 2. Если внутри окружности радиуса 1 или на ней, то можно также провести прямую и аналогично получаем, что расстояние не менее, чем 1.
Правильно?
А дальше можно по индукции, да?

-- 27.01.2015, 00:54 --

ИСН в сообщении #968846 писал(а):
Andrei94 в сообщении #968740 писал(а):
Там эллипс будет?
Где? У нас была задача про белых кроликов; откуда вдруг, почему, и в каком качестве там мог бы появиться эллипс (или, for that matter, любая другая геометрическая фигура)?

Да, эллипс тут не причем, что-то я не в ту сторону подумал (пытался зафиксировать сумму расстояний от двух заданных точек, впрочем, уже не важно)

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение27.01.2015, 00:54 
Аватара пользователя
Andrei94 в сообщении #968971 писал(а):
то есть таких $x$ нет? Верно?

Неверно. Проверьте хотя бы уже упоминавшееся $x=0,5$.
Вы в обоих рассуждениях отбросили равенство в неравенствах.

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение27.01.2015, 01:20 
Аватара пользователя
Andrei94 в сообщении #968971 писал(а):
Правильно?
А дальше можно по индукции, да?
Ага, попробуйте по индукции. Правда, ничего не выйдет, но это в любом случае полезно. Что толку, что на окружности есть места, удалённые от одной точки? Как только точек делается две, то у них эти удалённые - в разных (вообще говоря) местах, и всё летит к чёрту, и мы ничего не знаем и не можем оценить.
Я намекал там, что для одной точки надо оценивать что-то совсем другое, но - - -

 
 
 
 Re: Сумма расстояний, целая и дробная часть (2 задачи)
Сообщение27.01.2015, 01:35 
Аватара пользователя
Andrei94 в сообщении #968971 писал(а):
Правильно?
А дальше можно по индукции, да?

Ну теперь-то я спокоен -- не переборщил я со своей подсказкой. Примерно на уровне.
Ну вот появился у Вас диаметр, правильно, и 2 точки пересечения его с окружностью, тоже правильно. Расстояние от единственной пока точки плоскости до одной из этих двух точек на окружности не менее 1 -- и это верно. А теперь добавляем ещё одну точку плоскости. Что с ней делать? Решите сначала этот вопрос, а потом индукция станет такой же ненужной, как и эллипс.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group