2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:18 
Аватара пользователя
EgZvor в сообщении #933771 писал(а):
и еще не знаю, как это q найти.

EgZvor в сообщении #933558 писал(а):
На единицу длины слоя приходится заряд $\tau(\tau > 0)$.

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:20 
Тогда q = &\tau&2&\pi&Rl

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:22 
EgZvor в сообщении #933771 писал(а):
$E_r(r)2&\pi&Rl = \frac{q}{3\varepsilon_0}$

Я из условия понял, что $\varepsilon=3$ внутри цилиндра. Снаружи единица. В левой части радиус неправильный, надо $r$.

Для внутренности точно так же, только заряд учитывается попавший внутрь маленького цилиндра.

-- 20.11.2014, 17:23 --

EgZvor в сообщении #933776 писал(а):
Тогда $q = \tau 2\pi Rl$

На единицу длины же!

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:26 
DimaM в сообщении #933777 писал(а):
На единицу длины же!

Значит просто q = &\tau&l?

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:28 
EgZvor в сообщении #933779 писал(а):
Значит просто $q = \tau l$?

Ага!
Ставьте вокруг формулы доллары или пользуйтесь кнопочкой "math", тогда формулы будут нормально выглядеть.

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:32 
Тогда &E_r(r) = \frac {&\tau&}{2&\pi&r&\varepsilon&_0}&

-- 20.11.2014, 14:33 --

DimaM в сообщении #933782 писал(а):
EgZvor в сообщении #933779 писал(а):
Значит просто $q = \tau l$?

Ага!
Ставьте вокруг формулы доллары или пользуйтесь кнопочкой "math", тогда формулы будут нормально выглядеть.

Я вроде так и делаю :-(

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:33 
EgZvor в сообщении #933783 писал(а):
Тогда $E_r(r) = \frac {\tau}{2\pi r\varepsilon_0}$

Во, замечательно. Теперь найдите поле внутри цилиндра. Затем его нужно проинтегрировать и найти потенциал.

-- 20.11.2014, 17:35 --

EgZvor в сообщении #933783 писал(а):
Я вроде так и делаю

При цитировании амперсанды вылазят.

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 14:52 
$E = \frac{&\tau&r}{2&\pi&R^2&\varepsilon&_0}$. Что-то такое?

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 15:00 
EgZvor в сообщении #933790 писал(а):
$E = \frac{\tau r}{2\pi R^2\varepsilon_0}$. Что-то такое?

Почти верно (проницаемость не равна единице по условию). Теперь у вас есть все необходимое для нахождения потенциала.

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 15:07 
DimaM в сообщении #933793 писал(а):
EgZvor в сообщении #933790 писал(а):
$E = \frac{\tau r}{2\pi R^2\varepsilon_0}$. Что-то такое?

Почти верно (проницаемость не равна единице по условию). Теперь у вас есть все необходимое для нахождения потенциала.

&&\varphi&(r) = \int_{M(r)}^{M(r_1)}(\overrightarrow{E}(\overrightarrow{r}), d\overrightarrow{r})&. Чтобы этой формулой воспользоваться нужно ведь проекцию найти, я не очень понимаю на что.

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 15:10 
EgZvor в сообщении #933798 писал(а):
Чтобы этой формулой воспользоваться нужно ведь проекцию найти, я не очень понимаю на что.

На вектор ${\bf r}$. Но у вас поле уже направлено по ${\bf r}$. Формула несколько неверная, правильная вот
$$\varphi_2-\varphi_1=-\int\limits_1^2{\bf E}\cdot{\bf dr}.$$

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 15:12 
DimaM в сообщении #933801 писал(а):
EgZvor в сообщении #933798 писал(а):
Чтобы этой формулой воспользоваться нужно ведь проекцию найти, я не очень понимаю на что.

На вектор ${\bf r}$. Но у вас поле уже направлено по ${\bf r}$. Формула несколько неверная, правильная вот
$$\varphi_2-\varphi_1=\int\limits_1^2{\bf E}\cdot{\bf dr}.$$

А почему пределы &1& и &2&?

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 15:14 
EgZvor в сообщении #933803 писал(а):
А почему пределы &1& и &2&?

Имеются в виду точки 1 и 2. Правильнее, конечно, будет $r_1, r_2$.

-- 20.11.2014, 18:15 --

Там я знак попутал, сейчас исправил.

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 15:15 
&&\varphi&(r) = \frac{&\tau&r^2}{12&\pi&R^2&\varepsilon&_0}&?

 
 
 
 Re: Электродинамика, потенциал электрического поля
Сообщение20.11.2014, 15:17 
EgZvor в сообщении #933808 писал(а):
$$\varphi(r) = \frac{\tau r^2}{12\pi R^2\varepsilon_0}$$

Если ноль на оси, то внутри цилиндра правильно с точностью до знака.

Это у вас опять амперсанды или движок форума глючит?

 
 
 [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group