2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Особая точка. ДУ.
Сообщение03.10.2014, 21:16 

(Оффтоп)

Это какое-то новое веяние у нас на форуме: не просто дать полное решение, но еще обстоятельно объяснить, почему оно является полным. :)

falazure123, а не подумать ли Вам немножко самому?

 
 
 
 Re: Особая точка. ДУ.
Сообщение03.10.2014, 22:24 
Внутри замкнутой интегральной кривой $U$ имеет экстремум. Это по теореме Вейерштрасса.
Из теоремы о необходимых условиях экстремума , частные производные в точке экстремума будут равны 0. (они существуют по условию).

И это всё?

Остался по-прежнему вопрос: как получается, что $U$ внутри интегральной кривой?

И еще.. какие условия накладываются все таки на функцию $U$ в определении уравнения в полных дифференциалах? в книжке просто, чтобы её полный дифференциал равнялся исходному уравнению.
В интернете нашел еще оговорку , что $U$ имеет непрерывные частные производные.. (но это то, чем я собственно пользуюсь в первом абзаце).

 
 
 
 Re: Особая точка. ДУ.
Сообщение03.10.2014, 22:28 
falazure123
А что такое $U$ вообще? какое отношение оно имеет к уравнению?
Писали ведь Вы уже. Так соберите же информацию воедино, всю.

ЗЫ Полный дифференциал уравнению равняться не может. Уравнению вообще ничто не может равняться, как ни странно.

 
 
 
 Re: Особая точка. ДУ.
Сообщение03.10.2014, 22:34 
Otta в сообщении #914931 писал(а):
falazure123
А что такое $U$ вообще? какое отношение оно имеет к уравнению?

Ну тут шел разговор выше про функцию $U$.
Уравнение $Mdx + Ndy = 0 $ называется уравнением в полных дифференциалах, если его левая часть является полным дифференциалом некоторой функции $U(x,y)$
дальше была теорема о необходимом и достаточном условии.
Чтобы уравнение $Mdx + Ndy = 0 $ было ур-ем в полных дифференциалах необходимо и достаточно , чтобы $dM/dy = dN/dx $ .

 
 
 
 Re: Особая точка. ДУ.
Сообщение03.10.2014, 22:44 
Аватара пользователя

(Оффтоп)

Otta в сообщении #914931 писал(а):
Уравнению вообще ничто не может равняться, как ни странно.

Не скажите! Строчка символов может равняться уравнению!

 
 
 
 Re: Особая точка. ДУ.
Сообщение03.10.2014, 23:37 
так по теореме о необходимых условиях мы получаем, что частные производные равны нулю.
а нам надо $ M(x_0,y_0) = N(x_0,y_0) = 0 $

а. понял. $U'x=0 $ и $U'y=0$. а это и есть $M$ и $N$

а может быть такое, что эта точка лежит на самой интегральной кривой? или такого не может быть?

 
 
 
 Re: Особая точка. ДУ.
Сообщение04.10.2014, 00:07 
 i  falazure123
Учитесь оформлять формулы. Полезные ссылки рядом с окном ввода сообщения. Например, topic183.html
$U'_x$ , $\frac {\partial M}{\partial y}$
Чтобы увидеть код, наведите курсор мыши на формулу.

 
 
 
 Re: Особая точка. ДУ.
Сообщение04.10.2014, 11:12 
Аватара пользователя
falazure123 в сообщении #914811 писал(а):
Про векторные поля и тп еще не было теорем к сожалению.

Дык ограничивать свои источники информации рамками читаемого учебного курса не обязательно ;)

 
 
 
 Re: Особая точка. ДУ.
Сообщение04.10.2014, 11:19 
falazure123 в сообщении #914969 писал(а):
а может быть такое, что эта точка лежит на самой интегральной кривой? или такого не может быть?

Смотря что называть интегральной кривой. Вообще-то если интегральная кривая проходит через особую точку, то на ней она и заканчивается, даже если она замкнута.

 
 
 
 Re: Особая точка. ДУ.
Сообщение04.10.2014, 18:05 
Аватара пользователя
пианист в сообщении #915030 писал(а):
Дык ограничивать свои источники информации рамками читаемого учебного курса не обязательно ;)

А вот ограничивать этими рамками используемые в задачах на доказательство факты - видимо, обязательно. А то можно на логический круг наступить нечаянно.

 
 
 
 Re: Особая точка. ДУ.
Сообщение04.10.2014, 20:02 
пианист в сообщении #915030 писал(а):
Дык ограничивать свои источники информации рамками читаемого учебного курса не обязательно ;)

Обязательно. Для уравнений в полных дифференциалах это -- лёгонькая учебная задачка, и в том учебном курсе все необходимые сведения присутствовали (ну разве что чорт, в смысле потенциал, не поминался, судя по всему, по имени). Если же от полнодифференциальности отказаться, то задача становится (в рамках "элементарного" курса ДУ) неподъёмной: это, в сущности, задача о причёсывании ежа. Т.е. они, во всяком случае, родственны, и эта задача более-менее к ежу сводится.

 
 
 
 Re: Особая точка. ДУ.
Сообщение05.10.2014, 10:27 
Аватара пользователя
Munin
Есть такое дело.
Но в смысле допинфо все же неплохо знать, я считаю, раз уж повод подвернулся.
ewert
Ну вот, а если с т.з. той теоремы, то даже и на простенькую задачу не тянет - так, элементарное упражнение на понимание используемых слов.

(Оффтоп)

Очень мне эта теоремка нравится ;)
Изящная, как.. как концерт ми-минор Мендельсона.

 
 
 
 Re: Особая точка. ДУ.
Сообщение05.10.2014, 11:04 
пианист в сообщении #915239 писал(а):
Ну вот, а если с т.з. той теоремы,

А её ещё нет. И ещё долго не будет.

 
 
 [ Сообщений: 28 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group