Да, но принципиальный момент - основания математики (как то, теория множеств, геометрия, теория вещественных чисел, мат. логика) построены изначально как математические модели реально фиксируемых в нашем мире отношений между объектами. То есть, не математики взяли из головы аксиомы геометрии, а потом физики проверили, а изначально математики видели, какие существуют отношения в реальности между объектами, и идеализировав их, сформулировали в виде аксиоматики геометрии. То же самое и с теорией множеств, и с математической логикой. Потому и можно говорить, что при доказательстве очередного мат. факта вы неявно доказываете какой-то факт для отношений, существующих в реальности (отчасти этим и объясняется успех математики).
Первые математические теории - да, являлись непосредственно моделями реальности. Остальные, которые строятся на основе этих первых, уже не имеют непосредственной интерпретации. Учитывая, что современные математические теории, называемые словами "арифметика" или "евклидова геометрия" - это не то же самое, что было у древних греков, я бы сказал, что все современные теории непосредственно о каких-то существующих в реальности отношениях не говорят.
Та же неевклидова геометрия началась просто как попытка доказать пятый постулат методом от противного. Оказалось, что противоречия не получается, а получается другая непротиворечивая теория. Какова же, по-Вашему, интерпретация утверждений геометрии Лобачевского как отношений, существующих в реальности?