2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Число пи как замечательный предел.
Сообщение01.06.2014, 18:58 


12/10/13
99
http://www.wolframalpha.com/input/?i=li ... 8pi%2Fn%29

http://www.wolframalpha.com/input/?i=li ... 8pi%2Fn%29

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение01.06.2014, 19:02 
Заслуженный участник
Аватара пользователя


06/10/08
6422
Ну так $\lim\limits_{n\to\infty} n\sin \dfrac{a}{n} = \lim\limits_{n\to\infty} n\tg \dfrac{a}{n} = a$, при чем тут именно $\pi$?

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение01.06.2014, 19:05 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
LebedKun
Однако, Ваше определение содержит рекурсию. Вас это не смущает?

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение01.06.2014, 19:07 
Заслуженный участник
Аватара пользователя


11/12/05
10078
Otta в сообщении #870631 писал(а):
LebedKun
Однако, Ваше определение содержит рекурсию. Вас это не смущает?
Участник веру в Бога и религию пропагандирует, а вы его хотите смутить рекурсией... :D

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение01.06.2014, 19:10 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
Dan B-Yallay
Это полезно, для разнообразия. :wink:

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение02.06.2014, 02:19 
Заслуженный участник


22/05/11
3350
Australia
LebedKun в сообщении #870617 писал(а):
Я вбил предел в WolframAlpha - всё сходится с моим решением (доказательством).
Вы вбили в Wolfram вот это:
Код:
lim n->oo n*tg(pi/n)
А теперь скажите, что такoе "pi" в этом коде.

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение02.06.2014, 04:39 
Заслуженный участник


16/02/13
4214
Владивосток
Sergey from Sydney в сообщении #870337 писал(а):
Вот и вычислите приближенно, например, $\sin{\frac{180^\circ} {1000}}$, не зная значение $\pi$
С какого, собственно, места видит проблему благородный дон? $\sin45^\circ=\frac{\sqrt2}2$, будете спорить? Теперь следите за руками: $\cos\alpha=2\cos^2\frac\alpha2-1$ — и, кто бы мог подумать, $\cos22.5^\circ$ у нас в руках!
Дело за малым: представить $\frac{180^\circ}{1000}$ в виде суммы/разности дробей вида $\frac{180^\circ}{2^n}$, потом посчитать их косинусы, синусы, да боже ж мой, всё, что хотите! Не буду вас оскорблять дальнейшим разжёвыванием.
Это, конечно, не значит, что я советую кому-нить именно вот так вот считать тригонометрические функции — должен же быть предел мазохизму. Но уж как-то слишком, имхо, лихо вы тут на LebedKun накинулись.

-- 02.06.2014, 12:51 --

Кстати говоря, как определение числа $\pi$ не сильно интересно, но как доказательство первого замечательного предела, которое обсуждается тут же, рядом — вполне, имхо, можно доработать напильником.

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение02.06.2014, 04:55 
Заслуженный участник
Аватара пользователя


06/10/08
6422
iifat в сообщении #870857 писал(а):
Дело за малым: представить $\frac{180^\circ}{1000}$ в виде суммы/разности дробей вида $\frac{180^\circ}{2^n}$
Не получится.

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение02.06.2014, 05:24 
Заслуженный участник


16/02/13
4214
Владивосток
Xaositect в сообщении #870859 писал(а):
Не получится

Даже если я напомню, что речь шла о "с точностью до сотых"?

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение02.06.2014, 05:45 
Заслуженный участник


22/05/11
3350
Australia
iifat писал(а):
С какого, собственно, места видит проблему благородный дон?
С использования рядов Тейлора. Именно так LebedKun предлагал считать оный синус.

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение29.07.2014, 12:48 
Аватара пользователя


07/01/12

232
Помню, акад. Мигдал в "Кванте" писал, что физически пи не константа, а переменная, которая всё время меняет своё значение в зав-ти от наличия масс около данной окружности, которая делится на её диаметр.

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение29.07.2014, 16:32 


24/01/08

333
Череповец
iqfun.ru в сообщении #891288 писал(а):
Помню, акад. Мигдал в "Кванте" писал, что физически пи не константа, а переменная, которая всё время меняет своё значение в зав-ти от наличия масс около данной окружности, которая делится на её диаметр.

А ссылочку нельзя?

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение30.07.2014, 16:47 
Аватара пользователя


07/01/12

232
http://www.kvant.info/arch/1984_8.htm , с. 26.

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение30.07.2014, 18:22 


18/06/14

78
LebedKun в сообщении #870309 писал(а):
Для других углов - можно приближённо вычислить через ряды Тейлора и т.д.


Вычислить можно, никто не спорит, но для этого сначала надо перевести аргумент из градусов в радианы, а это нельзя сделать не используя число $\pi$.

 Профиль  
                  
 
 Re: Число пи как замечательный предел.
Сообщение31.07.2014, 09:58 


24/01/08

333
Череповец
Я как-то попробовал пересчитать, сколькими способами получено это число. Начиная с формулы Виета. Около 80 насчитал и сбился со счёта. :-)
А сколько их, правда?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group