2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Тригонометрические уравнения
Сообщение21.06.2014, 19:18 
Аватара пользователя
Qazed в сообщении #877980 писал(а):
$$ \sin^2x=\dfrac{4}{5} \Longleftrightarrow \cos^2 x = \sqrt{1-\left(\dfrac{4}{5}\right)^2} = \dfrac{3}{5} $$
:shock:

 
 
 
 Re: Тригонометрические уравнения
Сообщение21.06.2014, 20:35 
Qazed в сообщении #877980 писал(а):
$ \sin^2x=\dfrac{4}{5} \Longleftrightarrow \cos^2 x = ... $
Задам учебную задачу: пусть $\sin^2x=\dfrac{1}{4}$. Чему тут равен квадрат тангенса?

 
 
 
 Re: Тригонометрические уравнения
Сообщение21.06.2014, 21:04 
Аватара пользователя
mihailm в сообщении #878016 писал(а):
Qazed в сообщении #877980 писал(а):
$ \sin^2x=\dfrac{4}{5} \Longleftrightarrow \cos^2 x = ... $
Задам учебную задачу: пусть $\sin^2x=\dfrac{1}{4}$. Чему тут равен квадрат тангенса?

Прошу прощения за свою невнимательность! Я по ошибке извлёк корень. Конечно же если $\sin^2 x = 4/5$, то $\cos^2 x = 1 - \sin^2 x = 1/5$, а $ \tg^2 x = 4 $ и соответственно $ \sin^2 x = 1/4 \Longleftrightarrow \cos^2 x = 3/4 \Longleftrightarrow \tg^2 x = 1/3$

 
 
 
 Re: Тригонометрические уравнения
Сообщение21.06.2014, 21:07 
Ну так дорешивайте уже вашу задачу

 
 
 
 Re: Тригонометрические уравнения
Сообщение21.06.2014, 21:21 
Аватара пользователя
$$ \tg^2 x = 4 \Longleftrightarrow
\left[ \begin{matrix}
\tg x = 2\\
\tg x = -2
\end{matrix} \right. \Longleftrightarrow
\left[ \begin{matrix}
x = \arctg2 + \pi c, c \in Z\\
x = - \arctg 2 + \pi f, f \in Z
\end{matrix} \right.
 $$
Подставляю серии в исходное уравнение и убеждаюсь, что первая не является его решением в действительных числах.
Ответ: $ \boxed{ x = -\arctg 2 + \pi f, f \in Z} $

Спасибо за помощь!

-- 21.06.2014, 22:39 --

Привожу второе уравнение:
$$ \left(\sqrt{3+2\sqrt{2}}\right)^{\sin x} + \left(\sqrt{3 - 2\sqrt{2}}\right)^{\cos x} = \dfrac{10}{3} $$
Замечаю, что $ \left(\sqrt{3+2\sqrt{2}}\right)\left(\sqrt{3 - 2\sqrt{2}}\right) = 1 \Longleftrightarrow  \left(\sqrt{3+2\sqrt{2}}\right)^{-1} = \left(\sqrt{3 - 2\sqrt{2}}\right)$ и наооборот. Пусть $ \left(\sqrt{3+2\sqrt{2}}\right) = a $, тогда получаю уравнение
$$ a^{\sin x} + a^{- \cos x} = \dfrac{10}{3} $$
Подскажите, что делать дальше.

 
 
 
 Re: Тригонометрические уравнения
Сообщение21.06.2014, 22:02 
там нет случайно каких-нибудь квадратов у синуса и косинуса?

 
 
 
 Re: Тригонометрические уравнения
Сообщение21.06.2014, 23:16 
Придумал, Qazed, у вас же ответы есть, давайте подставим корни в уравнение.

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 08:00 
Аватара пользователя
Никаких квадратов нет, всё оказывается гораздо проще.
Ответ в задачнике: Нет решений

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 08:21 
Qazed в сообщении #878154 писал(а):
Ответ в задачнике: Нет решений

А они есть. Так что опечатка в задачнике. Возможно, предполагалось
$\left(\sqrt{3+2\sqrt{2}}\right)^{\sin x} + \left(\sqrt{3 - 2\sqrt{2}}\right)^{\sin x} = \dfrac{10}{3}$

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 09:59 
Qazed в сообщении #878154 писал(а):
Никаких квадратов нет, всё оказывается гораздо проще.
Ответ в задачнике: Нет решений

Засада) Но там действительно есть корни (Otta). То что они там есть, можно увидеть, если нарисовать график. Только эти корни скорее всего нельзя выразить через известные значки.

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 10:21 
Qazed в сообщении #877873 писал(а):
переношу второе слагаемое в правую часть, возвожу уравнение в квадрат и получаю следующее
$$ 2 \sqrt{\left(\dfrac{9}{5}-\tg x\right)\left(\sin^ 2 - \dfrac{4}{5}\right)} = 0 $$

Это хорошо, но теперь полезно обратить внимание, что левое подкоренное выражение есть сумма правых подкоренных выражений. Поэтому ОДЗ сводится в точности к тому, что каждая из последних двух скобок неотрицательна. И при этом хотя бы одна из них должна обращаться в ноль. Теперь надо просто найти значение тангенса, обнуляющее первую скобку, и проверить знак второй скобки при этом тангенсе (учитывая, что квадрат синуса явно выражается через квадрат тангенса). А потом наоборот. И только после этого брать арктангенс

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 10:24 
Аватара пользователя
Корни действительно есть:
Изображение
Граффик:
Изображение

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 10:42 
То, что корни есть, легко увидеть безо всяких альфов и даже без графиков. Очевидно, что $ \left(\sqrt{3+2\sqrt{2}}\right)^{\sin x} + \left(\sqrt{3 - 2\sqrt{2}}\right)^{\cos x} < \dfrac{10}{3} $, если взять $\sin x=0,\ \cos x=1$. Теперь хорошо бы подобрать такую пару синуса и косинуса, чтобы получилось неравенство в противоположную сторону. Ну так первая же тупая попытка $\sin x=1,\ \cos x=0$ это и даёт:

$\sqrt{3+2\sqrt2}+1>\frac{10}3\ \Leftrightarrow\ 3+2\sqrt2>\frac{49}9\ \Leftrightarrow\ \sqrt2>\frac{22}{18}.$

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 11:35 
Аватара пользователя
Микрозамечание: $\sqrt{3\pm 2\sqrt{2}}=\sqrt{2}\pm 1$.

 
 
 
 Re: Тригонометрические уравнения
Сообщение22.06.2014, 14:33 
Аватара пользователя
ewert в сообщении #878165 писал(а):
Qazed в сообщении #877873 писал(а):
переношу второе слагаемое в правую часть, возвожу уравнение в квадрат и получаю следующее
$$ 2 \sqrt{\left(\dfrac{9}{5}-\tg x\right)\left(\sin^ 2 - \dfrac{4}{5}\right)} = 0 $$

Это хорошо, но теперь полезно обратить внимание, что левое подкоренное выражение есть сумма правых подкоренных выражений. Поэтому ОДЗ сводится в точности к тому, что каждая из последних двух скобок неотрицательна.

Объясните подробнее, пожалуйста

 
 
 [ Сообщений: 33 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group