2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 интеграл Римана
Сообщение13.06.2014, 23:27 
а разве не достаточно определить интеграл Римана на пополненении по норме равномерной сходимости пространства ступенчатых функций? При том, что все равно есть интеграл Лебега. Где так существенно нужно именно пространство $\mathcal{R}[a,b]$?

 
 
 
 Re: интеграл Римана
Сообщение15.06.2014, 22:46 
Oleg Zubelevich в сообщении #875177 писал(а):
а разве не достаточно определить интеграл Римана на пополненении по норме равномерной сходимости пространства ступенчатых функций?

Может, и достаточно (просто не думал); но что ненужно точно -- то факт. Интеграл Римана -- это всего лишь простейшая из формально корректных (и при этом достаточно универсальных, хотя некоторые товарищи здесь против универсальностей и протестуют) конструкций интеграла. Тем и ценна.

Впрочем, если Вам хочется из сугубо абстрактных соображений посмотреть на этот интеграл с сугубо возвышенных позиций... Ну, ладно, тут ведь не "Вопросы преподавания".

(меня просто разозлило слово "достаточно", если чего)

 
 
 
 Re: интеграл Римана
Сообщение15.06.2014, 23:02 
Аватара пользователя
В учебнике Львовского (и, если верить Львовскому, в учебнике Дьедонне тоже) так и делают.
Чтобы формально корректно ввести интеграл Римана надо рассказать о фильтрах и базах.
Чтобы формально корректно ввести интеграл Коши (как его называет Львовский) надо рассказать о пополнении метрических пространств (что не так уж и сложно сделать с учётом того, что про метрические пространства к этому моменту и так рассказывают).

 
 
 
 Re: интеграл Римана
Сообщение15.06.2014, 23:05 
Аватара пользователя
kp9r4d в сообщении #875808 писал(а):
Чтобы формально корректно ввести интеграл Римана надо рассказать о фильтрах и базах.


Не надо, если использовать определение по Дарбу.

 
 
 
 Re: интеграл Римана
Сообщение15.06.2014, 23:11 
Так делают ещё Ленг (Real and functional analysis) и вроде бы Рид--Саймон.

 
 
 
 Re: интеграл Римана
Сообщение15.06.2014, 23:27 
Аватара пользователя
lena7 в сообщении #875816 писал(а):
вроде бы Рид--Саймон.


Рид и Саймон изначально рассматривают класс $PC[a,b]$, состоящий из кусочно-непрерывных функций, и определяют не сам интеграл Римана, а его сужение на этот класс.

 
 
 
 Re: интеграл Римана
Сообщение16.06.2014, 00:13 
g______d в сообщении #875811 писал(а):
Не надо, если использовать определение по Дарбу.

Даже и Дарбу не обязательно. Дарбу -- не более чем удобный инструмент, но можно и без него.

-- Пн июн 16, 2014 01:16:01 --

lena7 в сообщении #875816 писал(а):
и вроде бы Рид--Саймон.

А разве Рид-Саймона интеграл конкретно Римана интересовал?... Мне всегда казалось, что они обходили этот вопрос как нечто уже навсегда пройденное.

 
 
 
 Re: интеграл Римана
Сообщение16.06.2014, 00:54 
Аватара пользователя
ewert в сообщении #875832 писал(а):
А разве Рид-Саймона интеграл конкретно Римана интересовал?


Нет, иначе бы он не ограничился кусочно непрерывными функциями. Он там как пример использования пополнения, стр. 23–24 первого тома.

(Оффтоп)

По слухам, Саймон сейчас заканчивает написание многотомного учебника по анализу для студентов и аспирантов. Думаю, что это будет очень хороший учебник.


ewert в сообщении #875832 писал(а):
Даже и Дарбу не обязательно. Дарбу -- не более чем удобный инструмент, но можно и без него.


Я думаю, что kp9r4d имел в виду, что стандартная конструкция Римана как предела интегральных сумм при ранге разбиения, стремящемся к нулю, является пределом по ультрафильтру ну или пределом по направленности.

-- Вс, 15 июн 2014 15:12:36 --

Рудин, кстати, тоже сначала определяет по Дарбу. Мне такой подход очень нравится, поскольку проблема существования неизвестно чего превращается в проблему равенства двух вещей, которые заведомо существуют.

 
 
 
 Re: интеграл Римана
Сообщение17.06.2014, 10:59 
Аватара пользователя
Вместо предфильтров, ультафильтров и прочей зауми давным-давно придуман предел по базе, как простейший универсальный подход к понятию предела, поэтому в куче учебников (включая любимого всеми Зорича) интеграл Римана определяется именно как предел по базе.

 
 
 
 Re: интеграл Римана
Сообщение17.06.2014, 11:26 
Brukvalub в сообщении #876335 писал(а):
Вместо предфильтров, ультафильтров и прочей зауми давным-давно придуман предел по базе, как простейший универсальный подход к понятию предела, поэтому в куче учебников (включая любимого всеми Зорича) интеграл Римана определяется именно как предел по базе.

А как сформулировать в терминах баз такое свойство топологического пространства: каждый фильтр мажорируется фильтром сходящимся к некоторой точке. (это определение компактности)

-- Вт июн 17, 2014 11:32:36 --

простейший универсальный подход к понятию предела это сеть (имхо)

 
 
 
 Re: интеграл Римана
Сообщение17.06.2014, 11:33 
Аватара пользователя
Понятие базы создавалось исключительно для того, чтобы максимально просто и доступно абстрагировать понятие предела и создать единый, универсальный подход ко всевозможным пределам, обслуживающим классический мат.ан. Поэтому, подозреваю, что на языке баз неудобно выражать свойства самих топологических пространств, не для того этот язык создавался.

 
 
 
 Re: интеграл Римана
Сообщение17.06.2014, 12:06 
Brukvalub
А чем принципиально отличается предел по фильтру от предела по базе? Фильтр можно считать просто каноническим представителем среди эквивалентных баз.

Oleg Zubelevich
Язык сетей эквивалентен языку фильтров.

 
 
 
 Re: интеграл Римана
Сообщение17.06.2014, 12:23 
Аватара пользователя
lena7 в сообщении #876357 писал(а):
Brukvalub
А чем принципиально отличается предел по фильтру от предела по базе? Фильтр можно считать просто каноническим представителем среди эквивалентных баз.
...
Может, отличие и не принципиальное, но базу для конкретного предела задавать легче, чем фильтр. Например, базой для интеграла Римана являются всевозможные размеченные разбиения отрезка с равномерно ограниченными сверху диаметрами. Как просто задать соответствующий фильтр?

 
 
 
 Re: интеграл Римана
Сообщение17.06.2014, 16:36 
lena7 в сообщении #876357 писал(а):
Brukvalub
А чем принципиально отличается предел по фильтру от предела по базе? Фильтр можно считать просто каноническим представителем среди эквивалентных баз.

Oleg Zubelevich
Язык сетей эквивалентен языку фильтров.

без Вас мы бы это никогда не узнали :mrgreen:


Brukvalub
вот ,кстати, тут обсуждался Фихтенгольц в другой ветке. А ведь он рассматривает в своем учебнике сети. И это было еще в очень косматые времена, когда вообще учебников (русскоязычных) по функану не было. Удивительно

 
 
 
 Re: интеграл Римана
Сообщение18.06.2014, 09:17 
Аватара пользователя
Злые языки Некоторые старые профессора с кафедры математического анализа утверждали, что 3-хтомник Фихтенгольца построен на основе учебника по анализу Валле-Пуссена (см. Валле-Пуссен Ш.-Ж. Курс анализа бесконечно малых, в двух томах. М.—Л.: ГИТТЛ, 1933. Перевод Г. М. Фихтенгольца.) Так, может, корни проблемы поискать там, у Валле-Пуссена?

 
 
 [ Сообщений: 34 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group