Речь идёт только о трёхтомнике. <...> Долго думал, что ошибок в нём вообще нет (как и опечаток) и это эталон. Вот теперь знаю две. Добавляйте.
sergei1961, да, был культ личности.
Пополняю Вашу коллекцию. Я писал об этих ошибках
http://www.za-nauku.ru//index.php?option=com_content&task=view&id=1003&Itemid=31 http://www.spbstu.ru/publications/m_v/N_015/frame_15.html#topНо здесь на форуме никто ничего не понял. Потому даю детальные разъяснения.
Фото страниц вставить я пока не научился.
Потому просто указываю страницы по изданию 1962 года, 1 том.
Все эти ошибки я отмечаю здесь не из-за буквоедства, а из-за того,
что видел и вижу их ужасное разрушающее воздействие на сознание
тысяч студентов и преподавателей.
Стр. 214. Здесь Г.М. утверждает, что формулу дифференциала из определения
якобы можно переписать в виде (5):

.
Это неверное утверждение, потому что (5) дает нам дифференциал только в двух случаях из трёх:
1) когда

и

- первичные переменные для комплекса всех переменных рассматриваемой задачи
2) когда

(или ф-ция большего числа аргументов) и нам нужен дифференциал

из разложения

по степеням

В третьем же случае, когда

и

- функция и ее приращение,
и нам нужен дифференциал из разложения

по степеням

- надо пользоваться ф-лой дифф-ла из определения, ф-ла (5) становится неверна.
Если бы Г.М. сделал такую оговорку
везде, дальнейших нелепостей не было бы.
Но из следующих страниц видно, что он делал эту оговорку все реже и реже и, наконец,
совсем перестал ее упоминать.
А все результаты без обоснования распространял на все три случая.
Стр. 215. Здесь Г.М. неосознанно приписывает Коши лишнее.
Да, Коши своей теорией пределов убрал с глаз долой бесконечно малые числа Лейбница
и в глазах современников перевел матанализ из мира бесплотных духов в мир реальных величин.
Но он не смог убрать б.м. числа из обозначений Лейбница.
Г.М. же верит, что и это удалось Коши.
И поэтому он осуществляет разрушительную для сознания студентов
тотальную подмену дифференциалов Лейбница
дифференциалами Лагранжа
в обозначениях Лейбница.
Стр. 216. Здесь есть оговорка Фихтенгольца, что рассуждения применимы
когда "икс - независимая переменная" но уже на следующей странице 217...
Стр. 217. ...здесь Г.М. уже забыл о своей оговорке с предыдущей страницы
и неверно утверждает, что формулу дифференциала всегда можно писать в виде (5)
Вот это свое неверное "всегда" он и называет "инвариантностью" дифференциала.
(у авторов до Г.М. я не видел термина "инвариантность", это явный плод пропаганды ТО).
На самом же деле эта "инвариантность", повторяю, наблюдается не всегда,
а только в двух случаях из трёх (см. стр. 214),
только в области использования формулы дифференциала суперпозиции двух функций.
Но не в полной области употребления дифференциала (того, что в определении)!
В третьем случае подстановка в

разложения

по степеням

даёт
сумму

и желаемый Фихтенгольцу результат получить невозможно в принципе, даже если проделать еще
одну операцию выделения главной линейной части (в сумме справа).
Стр. 218.
Г.М. уверяет, что правило V (дифференцирования суперпозиции двух функций)
в обозначениях Лагранжа "всегда" выглядит так же, как в обозначениях Лейбница,
т.е. в виде правила сокращения дроби
Если бы Г.М. аккуратно следил за своей же необходимой оговоркой, он бы видел,
что это верно опять только в двух случаях из трёх (см. стр 214).
А вот в третьем случае правило V уже не выглядит как правило сокращения дроби:

(напоминаю: в левой части равенства дифференциалы Лейбница, в правой - Лагранжа,
приращения обозначены как всегда)
Стр. 241 Здесь Г.М. уже окончательно опускает свою оговорку и вот результат:
он уверяет, что в Лейбницевском обозначении старшей производной
дифференциалы Лейбница можно заменить дифференциалами Лагранжа и
разрешает читателям рассматривать результат такой замены как дробь.
Ну, если Фихтенгольц разрешил, то и воспользуемся его разрешением:

т.е. получили неверную общую формулу старшей производной суперпозиции двух функций.
Не говоря уже о том, что общую формулу вообще получить невозможно.
Это один из тех случаев рекуррентных вычислений, которые в принципе не сокращаются
до формулы n-ого члена последовательности.
Что же на самом деле должен был написать Фихтенгольц, заменяя дифференциалы Лейбница
дифференциалами Лагранжа ? Он должен был написать

Здесь в левой части дифференциалы Лейбница, в правой части - Лагранжа.
-- 14.06.2014, 18:33 --Стр. 242 Здесь Г.М. тоже не упоминает свою оговорку, но, действуя в её рамках,
он получает формулу второго дифференциала суперпозиции,

(3)
которая верна во всех трёх случаях.
Дело в том, что её можно получить из суперпозиции двух степенных разложений.
Т.е. здесь Г.М. получил верную всегда формулу, действуя методами, справедливыми лишь
в двух случаях из трёх. И не заметил этого.
Но ниже на этой же странице есть вопиющая ошибка Г.М. - "разобранный" им пример.
Он рассматривает две функции

и

Сначала он вычисляет второй дифференциал от суперпозиции

(в отличие от него я использую правильные обозначения)

Это второй дифференциал из разложения

по степеням

в точке

Это эталонный результат, правильный.
Кроме того, он вычисляет тот же второй дифференциал по формуле (3) дифференциала суперпозиции

получил то ж самое,естественно.
И ещё он вычисляет нечто

Но что это такое?
Если это и в самом деле второй дифференциал, он должен был быть таким:

Т.е. это второй дифференциал из разложения

по степеням

,
выраженный через

и

- совсем другой дифференциал, который не имеет смысла сравнивать с только что полученным.
Но Фихтенгольц вычисляет именно произведение второй производной по икс на квадрат дифференциала функции икс (!)
- то есть вычисляет значение формулы, которая ЗАВЕДОМО НЕ ЯВЛЯЕТСЯ вторым дифференциалом
ни в том ни в другом разложении.
Заложив в вычисления неверную формулу он потом показывает, что результат не совпадает с предыдущими и отсюда делает какие-то выводы о какой-то "не инвариантности"...
Заложил в исходные условия ложь, как следствие получил очевидную ложь,
и на основании ложности следствия уверяет, что причиной его ложности является что-то другое, а не он сам!
Это что, математика или ловкость рук, извините?
Ну а следующие авторы массовых (и эталонных) советских учебников - Ильин и Позняк, Шилов, Кудрявцев и т.д. в этой теме следовали Фихтенгольцу и некоторые добавили ошибок еще более ужасных.
И совокупный тираж их по СССР - миллионы экземпляров книг!
-- 14.06.2014, 18:53 --После этого описания скажу два слова на тему "что делать".Надо не просто исправлять найденные ошибки, надо переписывать весь раздел заново,
заботясь о том, чтобы учащиеся овладевали сразу двумя языками:
и языком производных
и языком дифференциалов.
Только их совокупность обеспечит математическую грамотность обучаемых
и их способность выдвигать гипотезы и проверять себя.
Во времена Фихтенгольца под влиянием успехов Коши язык дифференциалов
был отодвинут на задний план, главной была производная.
От этой кособокости и пошли описанные мной выше проблемы.