Для сжимаемой жидкости решения с блоапом тривиально существуют.
Прошу прощения - я не занимался НС проблемой, поэтому у меня вопрос. Ведь уравнения для несжимаемой жидкости являются частным случаем уравнений для несжимаемой.
http://ru.wikipedia.org/wiki/%D3%F0%E0% ... E%EA%F1%E0Почему, с Ваших слов, доказано существование решения для более общего случая - для сжимаемой жидкости, а для несжимаемой жидкости не доказано. Наверно для сжимаемой жидкости доказано существование решения только для частных случаев?
Вот фрагмент автореферата одной диссертационной работы на эту тему -
http://www.dissercat.com/content/razres ... ti-bingama"Исследования уравнений Навье-Стокса сжимаемой жидкости в целом по времени [24]-[28] привели в 1994 году к доказательству корректности двумерной модели [29], когда вязкости являются степенными функциями от плотности. Причём, в этой работе было доказано как существование и единственность классического и сильного обобщённого решений, так и существование слабого обобщённого решений. После этого были опубликованы работы о разрешимости многомерных моделей, в которых вязкости являлись степенными [30] или экспоненциальными [31, 32] функциями от компонент тензора скоростей деформаций. В первой из этих работ [30] было введено понятие мерозначного решения и доказано его существование, а во двух других [31, 32] установлено существование слабого обобщённого решения для модели Бюргерса (с постоянным давлением). Изучение уравнений с экспоненциальной зависимостью тензора напряжений от тензора скоростей деформаций продолжилось доказательством существования слабого обобщённого решения для модели с давлением, линейно зависящим от плотности [33, 34].
С начала исследований в этой области наибольший интерес проявлялся к разрешимости классической модели (где коэффициенты вязкости Ли /л константы), и в 1998 году были получены соответствующие результаты [35].
Также в 1990-х начали публиковаться работы о корректности различных приближённых многомерных моделей для уравнений Навье-Стокса сжимаемой жидкости [36]-[40].
Однако существует большое количество природных и искусственных сплошных сред для которых запись закона напряжённого состояния в виде (0.5) неприемлема в силу неоднозначного определения тензора Р' по заданным Ю), р и 9. Например, существуют материалы, которые текут как обычная вязкая жидкость только при интенсивности напряжений ср(Р') большей чем предельное значение Tq = const > 0 (зависящее от материала). А в областях течения этих сред, где <£>(Р') < tq предполагается жёсткое течение, задающееся уравнением Р = 0. Такие материалы называются жидкостями Бингама [41, 42]. Примерами подобных сред являются суспензионные потоки с большой плотностью твёрдых частиц [43], неочищенные нефти, цементы [44]."