2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение19.12.2013, 21:30 
Аватара пользователя
venco в сообщении #803599 писал(а):
Talinkin в сообщении #803597 писал(а):
Следовательно $w$ делится на $q$
Не "следовательно". Ещё может $H$ делиться на $q$.


спасибо

-- 19.12.2013, 23:05 --

venco в сообщении #803599 писал(а):
Talinkin в сообщении #803597 писал(а):
Следовательно $w$ делится на $q$
Не "следовательно". Ещё может $H$ делиться на $q$.


Так как $L=wH$,
то из $w=q^{2}(L^{3}/H)$ получаем:
$w=(q^{2}w^{3}H^{3})/H $
следовательно: $ 1=q^{2}w^{2}H^{2}=c^{2}$

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение19.12.2013, 22:17 
Talinkin в сообщении #803603 писал(а):
Так как $L=wH$
Нет.
Надоело.
Вам лучше не трогать математику.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение19.12.2013, 22:33 
Аватара пользователя
Talinkin в сообщении #803603 писал(а):
venco в сообщении #803599 писал(а):
Talinkin в сообщении #803597 писал(а):
Следовательно $w$ делится на $q$
Не "следовательно". Ещё может $H$ делиться на $q$.


спасибо

-- 19.12.2013, 23:05 --

venco в сообщении #803599 писал(а):
Talinkin в сообщении #803597 писал(а):
Следовательно $w$ делится на $q$
Не "следовательно". Ещё может $H$ делиться на $q$.


Так как $L=wH$,
то из $w=q^{2}(L^{3}/H)$ получаем:
$w=(q^{2}w^{3}H^{3})/H $
следовательно: $ 1=q^{2}w^{2}H^{2}=c^{2}$


виноват,степень слетела.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 03:47 
Аватара пользователя
Пусть $H=(a^{2}-ab+b^{2})$
$a+b=qw$, где $q$-простое,а $w$ - составное и $w$ не делится на $q$
Тогда $c^{3}=qwH$
Пусть $H$ делится на $qw$
$H=qwZ$

далеес:
$c^{3}=q^{2}w^{2}Z$
$c$ делится на $q$,
следовательно:
$c=qL$
$q^{3}L^{3}=q^{2}w^{2}Z$
$qL^{3}=w^{2}Z$

Пусть $Z$ не делится на $qw=(a+b)$
тогда $w$ делится на $q$.Противоречие.

Следовательно
$Z=qwG$
$c^{3}=q^{3}w^{3}G$
$c^{3}=(qw)^{3}G$
следователно $c$ делится на $qw$,то есть $c$ делится на $(a+b)$
Противоречие.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 06:59 
7. Тогда $\cos γ = X_1/Y\engo (1)$

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 10:19 
Talinkin в сообщении #803741 писал(а):
$a+b=qw$, где $q$-простое,а $w$ - составное и $w$ не делится на $q$
Такое разве возможно? Если $q <> 3$, то вроде бы $q$ должно быть в степени кратной $3$. Вы ничего о таком не слышали, про формулы Абеля в связи с теоремой Ферма?
Опять же, остальные случаи разложения $a+b$, где $q$ будет с другой степенью, вы собираетесь рассматривать? Ну получите противоречие в одном случае, а с остальными случаями разложения как?

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 15:22 
Аватара пользователя
Пусть:
$w=a+b$
$H=(a^{2}-ab+b^{2})$

тогда: $c^{3}=wH$
Пусть $H$ делится на $w$ следовательно $H=wZ$ , где $Z$ не делится на $w$
$c^{3}=w^{2}Z$
$c=wL$
$w^{3}L^{3}=w^{2}Z$
$wL^{3}=Z$
следовательно $ Z$ делится на $ w$.Противоречие.

Следовательно $Z$ делится на $w$
$Z=wG$
$H=w^{2}G$
$c^{3}=w^{3}G$
Следовательно $c$ делится на $w=a+b$ .Противоречие.
Следовательно $H$ не делится на $w=a+b$

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 15:40 
Talinkin в сообщении #803892 писал(а):
Пусть $H$ делится на $w$ следовательно $H=wZ$ , где $Z$ не делится на $w$
Почему $H$ делится на $w$? А если не делится?
$H=(a^{2}-ab+b^{2})$ или $H=(a(a+b)-3ab+b(a+b))$

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 15:56 
Аватара пользователя
yk2ru в сообщении #803900 писал(а):
А если не делится?



Этот случай как раз,я сейчас и рассматриваю.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 17:09 
Аватара пользователя
Talinkin в сообщении #803892 писал(а):
Пусть:
$w=a+b$
$H=(a^{2}-ab+b^{2})$

тогда: $c^{3}=wH$
Пусть $H$ делится на $w$ следовательно $H=wZ$ , где $Z$ не делится на $w$
$c^{3}=w^{2}Z$
$c=wL$
$w^{3}L^{3}=w^{2}Z$
$wL^{3}=Z$
следовательно $ Z$ делится на $ w$.Противоречие.

Следовательно $Z$ делится на $w$
$Z=wG$
$H=w^{2}G$
$c^{3}=w^{3}G$
Следовательно $c$ делится на $w=a+b$ .Противоречие.
Следовательно $H$ не делится на $w=a+b$


Так как $H$ не делится на $w$,то:
$w=p^{3}$
$H=G^{3}$
Далее,так как $H$ делится на $G$,то
$H=GQ$
$c=GL$
$c^{3}=wGQ$
$G^{3}L^{3}=wGQ$
$G^{2}L^{3}=wQ$
$G$ не делится на $w$, следовательно $L$ делится на $w$.
Следовательно $L=wS$.
Так как $c=GL$,то $c=GwS$.
Cледовательно $c$ делится на $w$.Противоречие.
ч.т.д.

P.S.: Кажется все,или что-то не так?

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 18:35 
Talinkin в сообщении #803935 писал(а):
Так как $H$ не делится на $w$,то:
$w=p^{3}$
$H=G^{3}$
Не все варианты представления для $w$ и $H$ вроде бы. Формулы Абеля смотрели?

Talinkin в сообщении #803935 писал(а):
Так как $H$ не делится на $w$,то:
$w=p^{3}$
...
$G$ не делится на $w$, следовательно $L$ делится на $w$.
$L$ разве не то же число, что и $p$? Получили значит, что $p$ делится на $w$ из $w=p^{3}$. Намудрили вы с преобразованиями точно.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение20.12.2013, 19:14 
Аватара пользователя
Talinkin в сообщении #803935 писал(а):
$G$ не делится на $w$, следовательно $L$ делится на $w$.


Виноват.Не верно.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение21.12.2013, 14:06 
Аватара пользователя
Talinkin в сообщении #803892 писал(а):
Пусть:
$w=a+b$
$H=(a^{2}-ab+b^{2})$

тогда: $c^{3}=wH$
Пусть $H$ делится на $w$ следовательно $H=wZ$ , где $Z$ не делится на $w$
$c^{3}=w^{2}Z$
$c=wL$
$w^{3}L^{3}=w^{2}Z$
$wL^{3}=Z$
следовательно $ Z$ делится на $ w$.Противоречие.

Следовательно $Z$ делится на $w$
$Z=wG$
$H=w^{2}G$
$c^{3}=w^{3}G$
Следовательно $c$ делится на $w=a+b$ .Противоречие.
Следовательно $H$ не делится на $w=a+b$


$H=(a^{2}-ab+b^{2})$
$w=a+b$
Пусть $H$ не делится на $w$
следовательно
$((a+b)^{2}-3ab)$ не делится на $(a+b)$
$(-3ab)$ не делится на $(a+b)$
противоречие,так как при $a=4$,$b=4$ получается:
$-48$ делится $8$.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение21.12.2013, 15:34 
А вот если взять $a$ и $b$ взаимно простыми и >1, то не делится. И что это доказывает? Если у Вас есть доказательство, то приведите его последовательно и целиком, а разбираться в множестве обрывков утомительно и неинтересно.

 
 
 
 Re: Крайнее доказательство ВТФ для n=3
Сообщение21.12.2013, 18:05 
Talinkin в сообщении #804211 писал(а):
при $a=4$,$b=4$ получается
что $a^3+b^3=4^3 + 4^3$ совсем не куб. И что это доказывает, неужели теорему Ферма для показателя $3$?

 
 
 [ Сообщений: 73 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group