2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 00:37 
Аватара пользователя
Верно ли, что для каждого приведенного квадратного трехчлена $f(x)$ существует $x$ такое, для которого числа $f(x)$, $f(f(x))$ и $f(f(f(x)))$ -- стороны треугольника? (Н.Агаханов)

А что такое приведённый трёхчлен?
Скажем, трёхчлен $f(x)=x^2+2$ является приведённым? Кто его привёл? И куда? У него ведь минимум равен 2? А если так, то $f(f(x))$ будет как минимум вдвое превышать $f(x)$...И в чём тогда подвох в задаче? Чем Назар Хангельдыевич хотел нас подколоть?

Пожалуйста, помогите решить.

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 00:44 
Аватара пользователя
С терминологией получилось забавно: приводимый многочлен - это не тот, который можно привести к приведенному :-)

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 00:46 
Аватара пользователя
provincialka
Так не моя терминология, а Назара Хангельдыевича :wink:

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 00:54 
Аватара пользователя
Ну, не его, общепринятая. А в чем проблема? Он утверждает, что это верно? Вы же доказали, что это не так.

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 00:56 
Аватара пользователя
provincialka в сообщении #801826 писал(а):
... А в чем проблема? ...

В том, что задачи Назара Хангельдыевича, как правило, сложны и интересны. А тут только интересная.

-- 16.12.2013, 01:02 --

Серьёзно, не агахановского уровня задача.

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 01:11 
Аватара пользователя
Ну, значит, была опечатка в подписи :wink: . А может, понадобилась "утешительная" задача, с этим всегда проблема. Потому что простые интересные задачи в основном уже известны, новенькое придумать трудно.

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 01:13 
provincialka в сообщении #801830 писал(а):
А может, понадобилась "утешительная" задача, с этим всегда проблема.

А ещё интересно, на какой возраст она рассчитана. Впрочем, если это с мат. боев, то это не так важно.

(Оффтоп)

Ktina в сообщении #801827 писал(а):
Серьёзно, не агахановского уровня задача.

Нужно будет завтра сходить у него спросить — как он только мог! :mrgreen:

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 01:29 
Аватара пользователя
Nemiroff в сообщении #801831 писал(а):
... А ещё интересно, на какой возраст она рассчитана. ...

На Алёнкин.
(Задача №7, Второй тур. Гранд-лига. 21 сентября 2008 г.)

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 09:24 
Ktina в сообщении #801827 писал(а):
Серьёзно, не агахановского уровня задача.
Да нет, уровень его задач в основном такой и есть. Это, как правило, головоломки-ребусы, решать которые полезно разве что младшим школьникам.

Вот, кстати, ещё один подобный шедевр, почему-то предложенный старшим школьникам (задача 258 из книги "Всероссийские олимпиады школьников по математике 1993–2006", МЦНМО, 2007):

Приведенный квадратный трехчлен $f(x)$ имеет 2 различных корня. Может ли так оказаться, что уравнение $f(f(x)) = 0$ имеет 3 различных корня, а уравнение $f(f(f(x))) = 0$ --- 7 различных корней?

Ktina, не сочтите за труд, решите и эту задачу (не заглядывая в оригинальное решение), а потом поделитесь с нами впечатлениями.

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 10:25 
Аватара пользователя
nnosipov в сообщении #801866 писал(а):
Ktina, не сочтите за труд, решите и эту задачу (не заглядывая в оригинальное решение), а потом поделитесь с нами впечатлениями.

Если уравнение $f(f(f(x))) = 0$ имеет 7 корней, то у уравнения $f(f(x)) = 0$ должно быть как минимум 4 корня.
Только не совсем понятно, зачем в условии говорилось о двух корнях уравнения $f(x) = 0$. Что бы изменилось, если бы оно имело один корень или не имело бы вообще?

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 10:33 
Ktina в сообщении #801879 писал(а):
Только не совсем понятно, зачем в условии говорилось о двух корнях уравнения $f(x) = 0$. Что бы изменилось, если бы оно имело один корень или не имело бы вообще?
Вот и я этого не понимаю (мое рассуждение совпадает с Вашим с точностью до мелочей --- я не рассуждал от противного). Может, мы с Вами ошибаемся? Но я в упор не вижу где.

Теперь можно посмотреть авторское решение и сравнить.

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 10:34 
Аватара пользователя
nnosipov в сообщении #801888 писал(а):
Теперь можно посмотреть авторское решение и сравнить.

http://zaba.ru/cgi-bin/tasks.cgi?tour=r ... solution=1
(задача №2, да ещё и два автора, как у песни "На тебе сошёлся клином белый свет")
:mrgreen:

 
 
 
 Re: Квадратный трёхчлен и стороны треугольника
Сообщение16.12.2013, 10:36 
Ktina в сообщении #801890 писал(а):
nnosipov в сообщении #801888 писал(а):
Теперь можно посмотреть авторское решение и сравнить.

http://zaba.ru/cgi-bin/tasks.cgi?tour=r ... solution=1
Оно явно сложнее.

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group