2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Лин. зависимость
Сообщение09.12.2013, 00:52 
Найти все значения параметра $a$, для которых указанная система будет лин. зависимой.
$(-3,-3,a,0)$, $(a,1,1,2)$, $(-2,a, 0,1)$

По сути нужно найти ранг соответствующей матрицы. Он не может быть больше 3. Ну, а если меньше 3, то система будет лин. зависимой.
Как тут лучше -- по минорам ранг искать (приравнивая все миноры третьего порядка к нулю) или же методом гаусса (а тогда нужно будет соотвествующие элементы занулять или как обосновать?)

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 01:04 
Аватара пользователя
По-моему, Гаусс быстрее. (я уже нашла оба ответа). В определителях всегда можно сделать ошибку. Но, впрочем, на любителя.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 01:39 
provincialka в сообщении #798023 писал(а):
По-моему, Гаусс быстрее. (я уже нашла оба ответа). В определителях всегда можно сделать ошибку. Но, впрочем, на любителя.

А там 2 значения? Спасибо

$(-3,-3,a,0)$, $(a,1,1,2)$, $(-2,a, 0,1)$

$$\begin{pmatrix}
 -3&-3  &a  & 0\\ 
 a& 1 & 1 &2 \\ 
 -2&a  &0  & 1\\
\end{pmatrix}\Leftrightarrow \begin{pmatrix}
 -3&-3  &a  & 0\\ 
 -2&a  &0  & 1\\
a& 1 & 1 &2 \\ 
\end{pmatrix}\Leftrightarrow \begin{pmatrix}
 -3&-3  &a  & 0\\ 
 -2a&a^2  &0  & a\\
2a& 2 & 2 &4 \\ 
\end{pmatrix}\Leftrightarrow \begin{pmatrix}
 -3&-3  &a  & 0\\ 
 -2a&a^2  &0  & a\\
0& 2+a^2 & 2 &4+a \\ 
\end{pmatrix}\Leftrightarrow$$

$$\Leftrightarrow\begin{pmatrix}
 -3&-3  &a  & 0\\ 
 -2&a  &0  & 1\\
0& 2+a^2 & 2 &4+a \\ 
\end{pmatrix}\Leftrightarrow\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
 -6&3a  &0  & 3\\
0& 2+a^2 & 2 &4+a \\ 
\end{pmatrix}\Leftrightarrow
\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
 0&3a+6  &2a  & 3\\
0& 2+a^2 & 2 &4+a \\ 
\end{pmatrix}$$

$$\Leftrightarrow\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
 0&3a^2+6a  &2a^2  & 3a\\
0& 6+3a^2 & 6 &12+3a \\ 
\end{pmatrix}\Leftrightarrow\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
 0&3a+6  &2a  & 3\\
0& 6-6a & 6-2a^2 &12 \\ 
\end{pmatrix}\Leftrightarrow\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
 0&3a+6  &2a  & 3\\
0& 3-3a & 3-a^2 &6 \\ 
\end{pmatrix}
\Leftrightarrow}$$

$$\Leftrightarrow\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
 0&3a+6  &2a  & 3\\
0& 9 & 3+2a+a^2 &9 \\ 
\end{pmatrix}\Leftrightarrow\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
 0&9(a+2)  &6a  & 9\\
0& 9(a+2) & (a+2)(3+2a+a^2) &9 \\ 
\end{pmatrix}\Leftrightarrow$$

$$\Leftrightarrow\begin{pmatrix}
 -6&-6  &2a  & 0\\ 
0&3a+6  &2a  & 3\\
0& 0 & (a+2)(3+2a+a^2)-6a &0 \\ 
\end{pmatrix}$$

Хотя бы идея верна? А как дальше?

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 01:52 
(Выкладки не проверяю) А дальше — рассматривать три возможных определителя 3х3 и смотреть, когда они одновременно равны нулю.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 04:54 
Аватара пользователя
С определителями быстрее. Нужно сосчитать всего один определитель (выбрать тот, что даёт квадратное уравнение) из которого получить два корня. Дальше просто их проверить.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 08:17 
Аватара пользователя
Вы выбрали неудачный вариант Гаусса. Там в последнем столбце нет параметра, вот с него и надо начинать упрощение. К тому же там уже есть 0. За два преобразования получаем трапециевидную матрицу, у которой на диагонали стоят две константы и квадратный многочлен. Вот его и приравниваем к 0.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 10:18 
provincialka в сообщении #798068 писал(а):
Вы выбрали неудачный вариант Гаусса. Там в последнем столбце нет параметра, вот с него и надо начинать упрощение. К тому же там уже есть 0. За два преобразования получаем трапециевидную матрицу, у которой на диагонали стоят две константы и квадратный многочлен. Вот его и приравниваем к 0.


Спасибо большое!

$$\begin{pmatrix}
 -3&-3  &a  & 0\\ 
 a& 1 & 1 &2 \\ 
 -2&a  &0  & 1\\
\end{pmatrix}\Leftrightarrow\begin{pmatrix}
 a&0  &-3  & -3\\ 
 1& 2 & a &1 \\ 
 0&1  &-2  & a\\
\end{pmatrix}\Leftrightarrow\begin{pmatrix}
 a&0  &-3  & -3\\ 
 a& 2a & a^2 &a \\ 
 0&1  &-2  & a\\
\end{pmatrix}\Leftrightarrow\begin{pmatrix}
 a&0  &-3  & -3\\ 
 0& 2a & a^2-3 &a-3 \\ 
 0&2a  &-4a  & 2a^2\\
\end{pmatrix}\Leftrightarrow$$

$$\Leftrightarrow\begin{pmatrix}
a&0  &-3  & -3\\ 
 0& 2a & a^2-3 &a-3 \\ 
 0&0  &-4a-a^2+3  & 2a^2-a+3\\
\end{pmatrix}$$

$$\begin{vmatrix} a&0  &-3 \\ 
 0& 2a & a^2-3  \\ 
 0&0  &-4a-a^2+3 \\  \end{vmatrix} =a(a^2-3)(-4a-a^2+3)$$

$a(a^2-3)(-4a-a^2+3)=0$

$a_1=0, a_2=-2-\sqrt{7}, a_3=\sqrt{7}-2$

Верно ли это? А почему достаточно только один минор третьего порядка занулить?
Ведь, чтобы ранг был менее 3 -- нужно, чтобы все миноры 3го порядка были нулевые...

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 12:24 
Аватара пользователя
Tosha в сообщении #798097 писал(а):
Верно ли это?

Надеюсь на Ваши арифметические способности.
Tosha в сообщении #798097 писал(а):
А почему достаточно только один минор третьего порядка занулить?
Из здорового прагматизма. Если этот минор не ноль, то ранг = 3, ну а если ноль (при конкретных $a$), то ранг зависит от остальных миноров. Зачем же их считать при любых $a$?

-- Пн дек 09, 2013 16:25:43 --

bot в сообщении #798053 писал(а):
Дальше просто их проверить.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 14:06 
Tosha в сообщении #798097 писал(а):
Верно ли это?
У Вас куча ошибок --- есть и вычислительные ошибки (определитель неправильно найден), есть и принципиальные (умножаете строку на $a$, а это не всегда элементарное преобразование). Считайте заново.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 16:19 
Аватара пользователя
$$\begin{bmatrix}-3&a&-2\\-3&1&a\\a&1&0\\0&2&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}$$Нам нужно выяснить, при каких значениях $a$ эта система имеет нетривиальное решение $(x, y, z)$. Из последнего уравнения $2y+z=0$ видим, что если $y=0$, то и $z=0$. А так как первый столбец матрицы не обращается в нулевой ни при каком $a$, то в случае $y=0$ имеем только тривиальное решение. Значит, если ищем нетривиальное, то $y\neq 0$, поэтому можно разделить $(x, y, z)$ на $y$. Или, чтобы не вводить новых обозначений, считать, что изначально $y=1$. Тогда $z=-2$.

Теперь, вычитая из первого уравнения второе, получаем линейное уравнение для $a$, в которое не входит $x$:
$(a-1)\cdot 1+(-2-a)(-2)=0$,
откуда $a=-1$. Сразу $x=1$. И ответ: линейная зависимость такова, что при $a=-1$ третий вектор равен полусумме первых двух, и больше никакова.

Вопрос (provincialka, bot): а где же Ваше второе решение? Я где-то его потерял?

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 16:42 
svv в сообщении #798256 писал(а):
а где же Ваше второе решение?
Напоминаю: предлагалось найти два возможных решения, которые потом проверить. Второе проверку не прошло. Таки да, ваш способ лучше. Но оба одинаково правильны.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 16:50 
Аватара пользователя
Понятно, спасибо.

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 18:59 
Спасибо! Переделанный вариант....

$$\begin{pmatrix}
a&0  &-3  & -3\\ 
 0& 2a & a^2+3 &a+3 \\ 
 0&0  &-4a-a^2-3  & 4a^2-a-3\\
\end{pmatrix}$$

$$\begin{vmatrix} a&0  &-3 \\ 
 0& 2a & a^2-3  \\ 
 0&0  &-4a-a^2+3 \\  \end{vmatrix} =a\cdot 2a\cdot (-4a-a^2-3)$$

$a(a^2-3)(-4a-a^2+3)=0$

$a_1=-1, a_2=-3, a_3=0$

И все эти три подозрительные значения нужно подставить в матрицу и проверить отдельно -- какой будет ранг? Или нужно по-другому?

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 20:41 
Аватара пользователя
Насчет двух я не уверена, я их оба не проверяла - в конце концов, это же не мое задание. А вот элементарные преобразования я делала по-другому. Через полчасика дойду до дома, напишу.

(Оффтоп)

набирать матрицы со смартфона -занятие не для слабонервных :shock:

 
 
 
 Re: Лин. зависимость
Сообщение09.12.2013, 21:00 
provincialka в сообщении #798382 писал(а):
Насчет двух я не уверена, я их оба не проверяла - в конце концов, это же не мое задание. А вот элементарные преобразования я делала по-другому. Через полчасика дойду до дома, напишу.

(Оффтоп)

набирать матрицы со смартфона -занятие не для слабонервных :shock:

Ок, спасибо, жду)

 
 
 [ Сообщений: 19 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group