2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение27.11.2013, 21:53 
Aritaborian
Так записывать можно, но лучше всё таки немую переменную как то выделить.

 
 
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение28.11.2013, 00:06 
Есть еще такая рекуррентная формула $P_m=n+mP^*_{m-1}$, где полином $P^*$ получается от $P$ заменой $n^k \text { на } \dfrac{n^{k+1}-n}{k+1}$

$\\P_0=n\\
\\
P_1=n+1\left(\frac{n^2-n}{2}\right)=\frac 1 2 n^2+\frac 1 2 n\\
\\
P_2=n+2\left(\frac 1 2\cdot \frac{n^3-n}{3}+\frac 1 2 \cdot \frac{n^2-n}{2}\right)=\frac 1 3 n^3+\frac 1 2 n^2+\frac 1 6 n\\
\\
P_3=n+3\left(\frac 1 3\cdot \frac{n^4-n}{4}+\frac 1 2 \cdot\frac{n^3-n}{3}+\frac 1 6 \cdot\frac{n^2-n}{2}\right)=\frac 1 4 n^4+\frac 1 2 n^3+\frac 1 4 n^2
$

и т.д.

-- 27.11.2013, 23:12 --

Вот статья в Кванте по теме
http://kvant.mccme.ru/1973/05/summy_odinakovyh_stepenej_natu.htm

 
 
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение28.11.2013, 00:25 
Я давно, так сказать, придумал такой способ решения подобной задачи. Поясню на примере. Допустим, нам нужно вычислить сумму $\sum\limits_{i=1}^n{i^2}$. Допустим, она равна многочлену 2+1 -ой степени от $n$: $\sum\limits_{i=1}^n{i^2}=A_0n^3+A_1n^2+A_2n+A_3$. Тогда, если в этой формуле заменить $n$ на $n+1$, мы снова получим верную формулу. Затем вычитаем почленно из второго равенства первое, дальше метод неопределенных коэффициентов + значение при $n=1$, получаем систему, решаем ее и получаем формулу. Я этот способ проверял до пятой степени и сходилось. А еще в какой-то углубленной школьной алгебре видел подобную задачу.

 
 
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение28.11.2013, 03:35 
Аватара пользователя
Shadow в сообщении #793635 писал(а):
Есть еще такая рекуррентная формула

Да, я именно так и выводил. Дошел до 20-ой степени, дальше было бессмысленно - уж очень громоздкие формулы получались.
Например, при 21-й степени вывел такое (до сих пор никак не проверю - верно или нет):

$\sum\limits_{n=1}^m n^{21}=\frac{m^2}{2}\bigg ( \frac{m^{20}}{11}+m^{19}+3.5m^{18}-\frac{133m^{16}}{6}+161.5m^{14}-969m^{12}+$

$+\frac{146965m^{10}}{33}-\frac{223193m^8}{15}+33915m^6-\frac{481061m^4}{10}+\frac{219335m^2}{6}-\frac{1222277}{110}\bigg )$

 
 
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение28.11.2013, 13:29 
Так вы индукцией и проверьте. А если считать как я сказал, то это будет одновременно и построение самой формулы, и доказательство ее индукцией. Интересно, можно ли этим способом решать какие-то другие задачи. По-моему способ чем-то интересен: формулы строятся прямо из воздуха.

 
 
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение28.11.2013, 13:50 
Аватара пользователя
Sinoid, прекрасная мысль! На досуге надо попробовать 8-)

 
 
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение28.11.2013, 16:44 
Аватара пользователя

(Ms-dos4)

Ms-dos4 в сообщении #793580 писал(а):
Так записывать можно, но лучше всё таки немую переменную как то выделить.
Теперь знаю, что можно ;-) И ёжику понятно, что лучше всё же так не делать. Впрочем, никогда раньше так и не делал.

 
 
 
 Re: Сумма членов последовательности от 1^m до n^m.
Сообщение04.08.2014, 03:57 
Аватара пользователя
Эти формулы являются частными случаями формулы Фаулхабера:
http://en.wikipedia.org/wiki/Faulhaber%27s_formula
http://mathworld.wolfram.com/FaulhabersFormula.html

 
 
 [ Сообщений: 23 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group