2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 про граф
Сообщение24.11.2013, 14:46 
Доказать, что любой граф допускает такую геометрическую реализацию в трёхмерном пространстве, при которой его ребрам отвечают прямолинейные отрезки

 
 
 
 Re: про граф
Сообщение24.11.2013, 14:57 
Аватара пользователя
Докажите индукцией по числу вершин, для этого докажите, что множество "плохих" точек (в которых ребра из последней вершины будут пересекать какие-то предыдущие ребра) не может быть всем пространством.

 
 
 
 Re: про граф
Сообщение24.11.2013, 14:57 
Аватара пользователя
1) Реализовать $|V|$ точек, соответствующих вершинам графа, на одной прямой.
2) Провести через эту прямую $|E|$ различных полуплоскостей ($E$ - число рёбер графа).
и
3) Реализовать каждое ребро в своей полуплоскости.

 
 
 
 Re: про граф
Сообщение24.11.2013, 15:00 
Аватара пользователя
chessar в сообщении #792090 писал(а):
1) Реализовать $|V|$ точек, соответствующих вершинам графа, на одной прямой.
2) Провести через эту прямую $|E|$ различных полуплоскостей ($E$ - число рёбер графа).
и
3) Реализовать каждое ребро в своей полуплоскости.
Нужны прямолинейные ребра, так не получится.

 
 
 
 Re: про граф
Сообщение24.11.2013, 15:02 
Аватара пользователя
Xaositect в сообщении #792091 писал(а):
chessar в сообщении #792090 писал(а):
1) Реализовать $|V|$ точек, соответствующих вершинам графа, на одной прямой.
2) Провести через эту прямую $|E|$ различных полуплоскостей ($E$ - число рёбер графа).
и
3) Реализовать каждое ребро в своей полуплоскости.
Нужны прямолинейные ребра, так не получится.

Да, действительно не получиться - упустил прямолинейность в условии.

 
 
 
 Re: про граф
Сообщение25.11.2013, 19:34 
Берем множество вершин графа. Это конечное множество. Ставим ему в соответствие конечное множество точек трехмерного пространства. Соединяем отрезками.

такое доказательство пойдет?)

 
 
 
 Re: про граф
Сообщение25.11.2013, 20:22 
Аватара пользователя
Xaositect рассказал, как решать проблему, с которой Вы еще не столкнулись: от реализации графа естественно требовать, чтобы ребра пересекались только своими концами в нужных вершинах — чтобы не было «левых» пересечений. Надо доказать, что для любых самых запутанных графов возможно избежать таких нежелательных пересечений.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group