2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Теплопроводность в сферических координатах (численно)
Сообщение04.08.2013, 12:52 
Аватара пользователя
ewert
Цитата:
Вам нужно рассчитать массив 1/2,3/2,5/2

Подождите, у нас же все узлы $1,2,3,4...$, а вот шаги между узлами начинаются с $u_{1}=\frac{\Delta r}{2}$. Откуда взялись дробные узлы? Либо я неправильно понял
Цитата:
В схему не вникал, но стандартный подход для этой ситуации -- использование полуцелых узлов. Т.е. $r_{i}=h(i+\frac{1}{2})$

$r_{1}=h(1+\frac{1}{2})$
$r_{2}=h(2+\frac{1}{2})$
...
(up)
Вы, наверное, имели в виду вот это?
Изображение

 
 
 
 Re: Теплопроводность в сферических координатах (численно)
Сообщение04.08.2013, 16:04 
Аватара пользователя
cool.phenon в сообщении #748423 писал(а):
Понятно, что здесь уравнение теплопроводности задано в сферических координатах, если полностью раскрыть операторы, то выйдет :
$$\frac{\partial u}{\partial t}=a^2\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^2 \frac{\partial u}{\partial r}\right)+\frac{1}{r\sin\varphi}\frac{\partial }{\partial \varphi}\left(\frac{\sin\varphi}{r} \frac{\partial u}{\partial \varphi} \right)+\frac{1}{r\sin\varphi}\frac{\partial}{\partial \psi}\left(\frac{1}{r\sin\varphi}\frac{\partial u}{\partial \psi}} \right)\right). $$
Эту краевую задачу нужно решить численно.
Запишите здесь уравнение в дивергентном виде (все под произвоными). Затем аппроксимируйте закон сохранения тепла для каждой ячейки сетки. Поток тепла через грань ячейки, для которой $r=0,$ не учитывайте, т.к. площадь этой грани равна нулю.

 
 
 
 Re: Теплопроводность в сферических координатах (численно)
Сообщение04.08.2013, 22:09 
TOTAL в сообщении #751796 писал(а):
Запишите здесь уравнение в дивергентном виде (все под произвоными). Затем аппроксимируйте закон сохранения тепла для каждой ячейки сетки. Поток тепла через грань ячейки, для которой $r=0,$ не учитывайте, т.к. площадь этой грани равна нулю.

Это уже другой вопрос -- как обосновать корректность перехода к полуцелым узлам. По-хорошему надо просто посадить "энергетический" функционал на сетку (энергетический в математическом смысле, а не в физическом) и потом его, как и положено, проварьировать. Вот как раз такая разностная схема и выйдет. Пока же ТС следует осознать сугубо формальную сторону вопроса -- что подобная система линейных уравнений (неважно, из каких соображений полученная) сама по себе замкнута и никакого граничного условия в центре не требует.

cool.phenon в сообщении #751713 писал(а):
Подождите, у нас же все узлы $1,2,3,4...$, а вот шаги между узлами начинаются с $u_{1}=\frac{\Delta r}{2}$. Откуда взялись дробные узлы? Либо я неправильно понял
Цитата:
В схему не вникал, но стандартный подход для этой ситуации -- использование полуцелых узлов. Т.е. $r_{i}=h(i+\frac{1}{2})$

$r_{1}=h(1+\frac{1}{2})$
$r_{2}=h(2+\frac{1}{2})$
...
(up)
Вы, наверное, имели в виду вот это?

Не знаю. Там я и впрямь в какой-то момент нечаянно сменил обозначения. Но неужели не ясно, что в любом случае имелось в виду?... Что первый узел отстоит от центра на полшага, следующий -- на полтора и т.д. И какая разница, какую сочинить для этого индексацию.

 
 
 
 Re: Теплопроводность в сферических координатах (численно)
Сообщение05.08.2013, 16:39 
Аватара пользователя
ewert
Ну, полуцелые узлы, как получается, можно понимать двумя различными способами.

TOTAL
Мне этот метод более понятен, но, кажется, его достаточно применить только для одного узла -- для центра, выразить правую часть уравнения для этого узла через поток.

Спасибо, с делением на нуль разобрался, возможно, в дальнейшем возникнут вопросы с реализацией этой схемы.

 
 
 [ Сообщений: 19 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group