В конечномерном случае лемма Цорна не нужна. Применяем индукцию по размерности.
Рассмотрим замкнутую выпуклую оболочку крайних точек

. Если найдется точка

, то найдется линейный функционал, принимающий максимальное значение вне

. (Здесь можно обойтись без т. Хана-Банаха. Достаточно опустить перпендикуляр из

на

. Этот перпендикуляр и определит нужный функционал.) Множество, на котором функционал принимает максимальное значение замкнуто, выпукло и имеет меньшую размерность. Далее индукция.