2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 линейная алгебра
Сообщение02.06.2013, 17:05 
Даны два многочлена $ p_1$ и $p_2$ от переменных $x_1,x_2,x_3$
возможно ли равенство
$(p_1)^2 +(p_2)^2=(x_1)^2+(x_2)^2+(x_3)^2$
я смог прийти к выводу что равенство возможно только когда многочлены $p_1 и p_2$ первой степени и с нулевым свободным членом
как это доказать я не знаю...

 
 
 
 Re: линейная алгебра
Сообщение02.06.2013, 17:31 
Аватара пользователя
ok_go_love в сообщении #731639 писал(а):
я смог прийти к выводу что равенство возможно только когда
Приведите пример равенства.

 
 
 
 Re: линейная алгебра
Сообщение02.06.2013, 17:32 
Аватара пользователя
И каков ранг квадратичных форм слева и справа?

 
 
 
 Re: линейная алгебра
Сообщение02.06.2013, 20:14 
мат-ламер в сообщении #731649 писал(а):
И каков ранг квадратичных форм слева и справа?

третей


я так понимаю что тут надо делать через закон инерции
в одном случае у нас вырожденная а в другом нет форма

 
 
 
 Re: линейная алгебра
Сообщение04.06.2013, 12:08 
Аватара пользователя
"Школьное решение"
1. Предположим, что среди многочленов $p_i$есть выше первой степени. Старший член многочлена наивысшей степени $ax^k$ $k>1$
Возводя в квадрат, видим, что у нас получится член $a^2 x^{2k}$ и коэффициент при $x^{2k}$ положителен. Следовательно, взаимоуничтожения членов такой степени после сложения многочленов не будет. Но коэффициенты при $x^k$ $k>2$ в правой части нулевые, и мы пришли к противоречию. Следовательно, степени многочленов, удовлетворяющих равенству, не больше единицы.
2. Подставим $x_1=x_2=x_3=0$ Тогда в левой части сумма квадратов свободных членов, а в правой ноль. Очевидно, это возможно, если все свободные члены ноль.

 
 
 
 Re: линейная алгебра
Сообщение04.06.2013, 13:40 
Аватара пользователя
Евгений Машеров в сообщении #732389 писал(а):
2. Подставим $x_1=x_2=x_3=0$ Тогда в левой части сумма квадратов свободных членов, а в правой ноль. Очевидно, это возможно, если все свободные члены ноль.

Свободные члены равны нулю. А дальше, что будет решением?

 
 
 
 Re: линейная алгебра
Сообщение04.06.2013, 13:50 
TOTAL в сообщении #732418 писал(а):
А дальше, что будет решением?

Уже отвечено:
мат-ламер в сообщении #731649 писал(а):
И каков ранг квадратичных форм слева и справа?

Собственно, из всей задачи только этот подвопрос к линейной алгебре и относится.

-- Вт июн 04, 2013 14:54:31 --

ok_go_love в сообщении #731732 писал(а):
я так понимаю что тут надо делать через закон инерции
в одном случае у нас вырожденная а в другом нет форма

Второе да, но первого для этого не нужно.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group