2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5  След.
 
 Новое доказательство ВТФ для n=3
Сообщение03.04.2013, 16:51 
В теме "ВТФ для n=3" (topic60946.html) я дал доказательство с использованием кольца $\mathbb{Z}[\sqrt[3]{2}]$.
Если $x^3+y^3+z^3=0$, где $x$, $y$ и $z$ - ненулевые, взаимно-простые целые числа, то $x^6-4 (yz)^3$ является квадратом целого числа, из чего следует, что $x^2-\sqrt[3]{4}(yz)$ является квадратом в кольце $\mathbb{Z}[\sqrt[3]{2}]$, а дальше, как говорится, дело техники.
В этой теме я предлагаю новое доказательство того, что $x^2-\sqrt[3]{4}(yz)$ является квадратом в кольце $\mathbb{Z}[\sqrt[3]{2}]$, которое не использует единственность разложения на простые множители в этом кольце.

Пусть

(1) $x^6-4 (yz)^3=a^2$, где $a$ - целое число.

Пусть
(2) $x^2-\sqrt[3]{4}(yz)=b^2$, где $b$ - алгебраическое число.

Из (2) следует:

(3) $(b^2-x^2)^3+4 (yz)^3=0$.

Из (3) и (1) следует:

(4) $b^6 - 3 b^4 x^2 + 3 b^2 x^4 - a^2=0$

Пусть

(5) $b^6 - 3 b^4 x^2 + 3 b^2 x^4 - a^2=(b^3+A_2 b^2+A_1 b+a)(b^3-B_2 b^2+B_1 b-a)$,

где коэффициенты $A_1$, $A_2$, $B_1$, $B_2$ - алгебраические числа, обращающие это равенство в тождество, верное при любых значениях $b$.

Из (5) следует:

(6) $b^6 - 3 b^4 x^2 + 3 b^2 x^4 - a^2=b^6+(A_2-B_2) b^5+(A_1+B_1-A_2 B_2) b^4+(A_2 B_1-A_1 B_2) b^3+(-A_2 a - B_2 a + A_1 B_1) b^2+(B_1 a - A_1 a) b - a^2$

Из (6) следует

(7) $B_1=A_1$, $B_2=A_2$ и
(8) $A_2^2-2 A_1=3 x^2$, $A_1^2-2 A_2 a=3 x^4$

Из (4) и (5) следует, что один из сомножителей в правой части равенства (5) равен нулю.
Поскольку второй сомножитель получается из первого заменой $a$ на $-a$ и $A_2$ на $-A_2$, то, без ограничения общности, предположим, что первый сомножитель равен нулю.
То есть:

(9) $b^3+A_2 b^2+A_1 b+a=0$

Пусть поле $F=\mathbb{Q}[A_1]$.
Из второго равенства в (8) следует, что $A_2 \in F$.

Поскольку степень расширения $[\mathbb{Q}[b]:\mathbb{Q}]$ равна 3 или 6, то степень расширения $[F:\mathbb{Q}]$ равна $1$ или $2$ или $3$.
Если многочлен (9) относительно $b$ неразложим на множители с коэффициентами из поля $F$, то степень расширения $[F:\mathbb{Q}]$ равна $1$ или $2$, иначе степень расширения $[F:\mathbb{Q}]$ равна $3$.

Покажем, что степень расширения $[F:\mathbb{Q}]$ не равна $2$.
Предположим обратное, что степень расширения $[F:\mathbb{Q}]$ равна $2$.
Тогда числа $A_1$ и $A_2$ удовлетворяют квадратным уравнениям с целыми коэффициентами, поэтому система уравнений (8) превращается в линейную систему уравнений относительно неизвестных $A_1$ и $A_2$, решением которой являются рациональные числа.

Следовательно, степень расширения $[F:\mathbb{Q}]$ равна $1$, что противоречит предположению.

Значит если многочлен (9) относительно $b$ неразложим на множители с коэффициентами из поля $F$, то степень расширения $[F:\mathbb{Q}]$ равна $1$, иначе степень расширения $[F:\mathbb{Q}]$ равна $3$.
В обоих случаях:

(10) степень расширения $[\mathbb{Q}[b]:\mathbb{Q}]$ равна $3$.

Из (2) и (10) следует, что $b \in \mathbb{Z}[\sqrt[3]{2}]$, что и требовалось доказать.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение03.04.2013, 20:09 
Моё доказательство того, что степень расширения $[F:\mathbb{Q}]$ не равна $2$ ошибочно. Надеюсь, что его можно исправить.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение04.04.2013, 20:03 
Предположим, что степень расширения $[F:\mathbb{Q}]$ равна $2$.

Тогда $A_2=C_2+D_2 \sqrt{d}$ и $A_1=C_1+D_1 \sqrt{d}$, где $d$ - целое число (не делящееся на квадрат целого числа), а $C_1$, $D_1$, $C_2$ и $D_2$ - рациональные числа.

Из (9) следует:

(11) $(b^3+C_2 b^2+C_1 b+a)+(D_2 b^2+D_1 b) \sqrt{d}=0$

Из (11) следует:

(12) $(b^3+C_2 b^2+C_1 b+a)^2-d (D_2 b^2+D_1 b)^2=0$

Поскольку степень расширения $\mathbb{Q}[b]:\mathbb{Q}$ равна $6$, то многочлен в левой части (12) равен многочлену в левой части (4).
Следовательно, коэффициент при $b^5$ в (12) равен нулю, а поскольку этот коэффициент равен $2 C_2$, то $C_2=0$.

Значит $A_2^2$ является рациональным числом, и из (8) следует, что $A_1$ и $A_2$ являются рациональными числами в противоречии с предположением, что степень расширения $[F:\mathbb{Q}]$ равна 2.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение04.04.2013, 20:20 
Феликс Шмидель в сообщении #705256 писал(а):
Поскольку степень расширения $[\mathbb{Q}[b]:\mathbb{Q}]$ равна 3 или 6, то степень расширения $[F:\mathbb{Q}]$ равна $1$ или $2$ или $3$.
Докажите подробно. Почему невозможно $[F:\mathbb{Q}]=4$? Из (8) следует, что $A_1$ есть корень уравнения 4-й степени с рациональными коэффициентами.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение05.04.2013, 00:33 
nnosipov в сообщении #705804 писал(а):
Феликс Шмидель в сообщении #705256 писал(а):
Поскольку степень расширения $[\mathbb{Q}[b]:\mathbb{Q}]$ равна 3 или 6, то степень расширения $[F:\mathbb{Q}]$ равна $1$ или $2$ или $3$.
Докажите подробно. Почему невозможно $[F:\mathbb{Q}]=4$? Из (8) следует, что $A_1$ есть корень уравнения 4-й степени с рациональными коэффициентами.


Я думал об этом случае, но мои соображения о невозможности $[F:\mathbb{Q}]=4$ оказались ошибочными.
Приношу извинения.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение26.04.2013, 09:44 
Целью этой темы является новое доказательство того, что $x^2-\sqrt[3]{4} yz$ является квадратом в кольце $\mathbb{Z}[\sqrt[3]{4}]$.
Хотя у меня пока нет доказательства, я получил интересные результаты, рассматривая выражение $x^2-\sqrt[3]{4} yz$ в кольце $\mathbb{Z}_p[\sqrt[3]{4}]$, где $p$ - простое число. Eсли $\sqrt[3]{4}$ не существует в $\mathbb{Z}_p$, то нетрудно показать, что $x^2- \sqrt[3]{4} yz$ является квадратом в кольце $\mathbb{Z}_p[\sqrt[3]{4}]$. В самом деле, это кольцо является конечным полем с циклической группой по умножению порядка $p^3-1$, поэтому $(x^2-\sqrt[3]{4}yz)^{(p^3-1)/2}$ равно в этом поле $1$ или $-1$, и от этого зависит, является ли $x^2-\sqrt[3]{4} yz$ квадратом или нет. Пусть $j$ равно $\sqrt[3]{4}$ или любому другому комплексному кубическому корню из $4$. Путём последовательного умножения, получим:

(13) $(x^2-j yz)^{(p^3-1)/2}=a_0+a_1 j+a_2 j^2$,

где $a_0$, $a_1$ и $a_2$ - целые числа, $a_1$ и $a_2$ делятся на $p$, а $a_0$ сравнимо с 1 или -1 по модулю $p$.

Перемножая равенства (13) для всех трёх значений $j$, получим:

(14) $(x^6-4 (yz)^3)^{(p^3-1)/2} \equiv a_0^3$ по модулю $p$.

Из (14) следует, что если $x^6-4 (yz)^3$ является квадратом по модулю $p$, то $a_0$ сравнимо с 1 по модулю $p$, и значит $x^2-\sqrt[3]{4} yz$ является квадратом в кольце $\mathbb{Z}_p[\sqrt[3]{4}]$.

Сложнее если $\sqrt[3]{4}$ существует в $\mathbb{Z}_p$. Этот случай будет рассмотрен в следующем сообщении.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение03.05.2013, 07:53 
У меня не заладилось с доказательством того, что $x^2-\sqrt[3]{4} yz$ является квадратом в кольце $\mathbb{Z}[\sqrt[3]{4}]$ или даже в кольце $\mathbb{Z}_p$, в случае когда $\sqrt[3]{4}$ существует в $\mathbb{Z}_p$ (если не существует, мы доказали в предыдущем сообщении). Незамечаемые ошибки - участь всех ферматистов.
Может быть проще доказать, что $x^2-\sqrt[3]{4} yz$ является суммой двух квадратов в поле $\mathbb{Q}[\sqrt[3]{4}]$. Вроде в локальных полях с доказательством этого нет проблем. Нельзя ли воспользоваться в этом случае локально-глобальным принципом Хассе?

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение03.05.2013, 08:14 
Феликс Шмидель, это интересные вопросы. Как появится свободное время, попробую подумать над этим. Сейчас, увы, много текущих дел.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение03.05.2013, 19:54 
Уважаемый Феликс Шмидель!
Вы прошли большой путь по теории ВТФ и, не сочтите за навязчивость, но мне было бы интересно услышать Ваше мнение об уравнении Ферма записанном в эквивалентном виде. Так все обычно рассматривают уравнение $x^n+y^n+z^n=0$
Но есть фундаментальное алгебраическое тождество:
$$(x+y+z)^n-x^n-y^n-z^n=n(x+y)(x+z)(y+z)W^{n-3}(x,y,z)$$
Где n-простое число, $W^{n-3}(x,y,z)$-целочисленный полином степени $n-3$ обладающий свойством
$W^{n-3}(x,y,z)=W^{n-3}(s,y,z)=W^{n-3}(x,s,z)=W^{n-3}(x,y,s)$ где $s=-x-y-z$
В это тождество входит формула уравнения Ферма и если исключить её то получим эквивалентное уравнение Ферма:$$(x+y+z)^n=n(x+y)(x+z)(y+z)W^{n-3}(x,y,z)$$
Может быть имеет смысл заняться полиномом$ W^{n-3}(x,y,z)$ и условиями его целостности. Разложить его на множители и проанализировать множители на взаимную простоту? Ламе и Дирихле пользовались этим тождеством для доказательства случаев$ n=5$,$ n=7$.http://mathworld.wolfram.com/FermatsLastTheorem.html

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение04.05.2013, 20:26 
Аватара пользователя
 ! 
ishhan в сообщении #719246 писал(а):
Вы прошли большой путь по теории ВТФ и, не сочтите за навязчивость, но мне было бы интересно услышать Ваше мнение об уравнении Ферма записанном в эквивалентном виде.
ishhan, замечание за попытку захвата темы и оффтоп в рамках данной темы.
Вы можете открыть свою тему (думаю, у Вас она была) и обсуждать в ней Ваш подход. Все желающие Вам ответят.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение06.05.2013, 07:20 
Уважаемый ishhan!

С удовольствием отвечу на ваш вопрос, но не в этой теме и не сейчас, потому что сейчас я собираюсь заниматься этой темой.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение06.05.2013, 23:57 
Приступим к доказательству того, что если $x^6-4 (yz)^3=a^2$, то $x^2-\sqrt[3]{4}$ является суммой двух квадратов в локальных полях.

Лемма 1
------------

Пусть $\rho$ - произвольный нечётный простой идеал кольца $\mathbb{Z}[\sqrt[3]{2}]$, и пусть $d$ - произвольный элемент этого кольца, не делящийся на $\rho$.
Пусть $k$ - произвольное натуральное число.

Тогда $d$ сравним с суммой квадратов двух элементов этого кольца по модулю идеала $\rho^k$.

Сделаем несколько замечаний в оффтопике о связи этой леммы с символом Гильберта и с представлением нуля квадратичной формой.

(Оффтоп)

Эта лемма эквивалентна тому, что при соблюдении условий леммы, символ Гильберта $(-1, d)_\rho=1$, что является стандартным фактом.
По определению символа Гильберта, $(-1, d)_\rho=1$, если уравнение

(О-1) $-X^2+d Z^2=Y^2$

имеет ненулевое решение в поле $\rho$ - адических чисел, которое определяется начиная с последовательностей элементов кольца $\mathbb{Z}[\sqrt[3]{2}]$ аналогично определению поля $p$ - адических чисел в начале "Теории чисел" Боревича и Шафаревича.
Разрешимость уравнения (О-1) эквивалентна (как показывается в этой книге) разрешимости сравнения

(О-2) $X^2+Y^2 \equiv d Z^2$ по модулю идеала $\rho^k$,

для любого натурального числа $k$, в числах $X$, $Y$ и $Z$ из кольца $\mathbb{Z}[\sqrt[3]{2}]$, хотя бы одно из которых не делится на $\rho$.

Покажем каким образом из разрешимости сравнения (О-2) следует сравнимость числа $d$ c суммой двух квадратов по модулю идеала $\rho^k$.
Если в решении сравнения (О-2) число $Z$ не делится на идеал $\rho$, то $d \equiv (X Z_1)^2+(Y Z_1)^2$, где $Z_1$ - число кольца $\mathbb{Z}[\sqrt[3]{2}]$,
такое, что $Z_1 Z \equiv 1$ по модулю идеала $\rho^k$ (существование такого $Z_1$ следует из того, что умножая $Z$ на все элементы полной системы вычетов по модулю идеала $\rho^k$, мы снова получим полную систему вычетов).

Если же $Z$ делится на идеал $\rho$, то хотя бы одно из чисел $X$ и $Y$ не делится на $\rho$ и из (О-2) следует, что $-1$ является квадратом по модулю идеала $\rho$ и, значит:

(О-3) $-1$ является квадратом по модулю идеала $\rho^k$.

Обоснуем вывод (О-3) позже.

Если

(О-4) $-1 \equiv V^2$ по модулю идеала $\rho^k$,

то

(О-5) $X^2+ (X V)^2 \equiv 0$ по модулю идеала $\rho^k$,

для любого числа $X$.

Из (О-5) следует:

(О-6) $(X+d)^2+(X V)^2 \equiv d$ по модулю идеала $\rho^k$,

при $X \equiv (1-d)/2$ по модулю идеала $\rho^k$.

Обоснуем теперь справедливость вывода (O-3).

Пусть $S$ - множество элементов в полной системе вычетов по модулю идеала $\rho^k$, которые не делятся на идеал $\rho$.

(О-7) Ровно половина из элементов $S$ являются квадратами по модулю идеала $\rho^k$.

В самом деле, из сравнения $b^2 \equiv c^2$ по модулю идеала $\rho^k$ следует, что либо $(b-c) \equiv 0$ по модулю идеала $\rho^k$, либо $(b+c) \equiv 0$ по модулю идеала $\rho^k$, поскольку $(b-c)$ и $(b+c)$ не могут оба делиться на идеал $\rho$.

(О-8) Ровно половина из элементов $S$ являются квадратами по модулю идеала $\rho$.

Это следует из представления элементов полной системы вычетов по модулю идеала $\rho^k$ полиномами (от числа, принадлежащего идеалу $\rho$, и не принадлежащему идеалу $\rho^2$) c коэффициентами из полной системы вычетов по модулю идеала $\rho$.

(О-9) Элементы $S$, которые являются квадратами по модулю идеала $\rho^k$ являются квадратами по модулю идеала $\rho$.

Из (О-7), (О-8) и (О-9) следует:

(О-10) элемент $S$ является квадратом по модулю идеала $\rho^k$ тогда и только тогда, когда он является квадратом по модулю идеала $\rho$.

Вывод (О-3) следует из (О-10).

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение07.05.2013, 01:24 
Лемма 1 является стандартным фактом и мы оставим её доказательство на потом.
А сейчас покажем, что из леммы 1 следует:

Лемма 2
-------------

Пусть $x^2-\sqrt[3]{4} yz=a^2$.

Пусть нечётный простой идеал $\rho$ кольца $\mathbb{Z}[\sqrt[3]{2}]$ не является общим делителем чисел $x^2-\sqrt[3]{4} yz$ и $x^4+\sqrt[3]{4} x^2 yz+ (\sqrt[3]{4} yz)^2$.

Пусть $k$ - произвольное натуральное число.

Тогда каждое из этих чисел сравнимо с суммой квадратов двух чисел из кольца $\mathbb{Z}[\sqrt[3]{2}]$ по модулю идеала $\rho^k$.

Доказательство:
---------------------

Одно из двух указанных чисел сравнимо с суммой двух квадратов в силу леммы 1, а второе в силу того, что их произведение равно $a^2$.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение07.05.2013, 12:22 
Обозначим: $c=x^2-\sqrt[3]{4} yz$ и рассмотрим уравнение:

(15) $X^2+Y^2-c Z^2=0$

В теме "ВТФ для $n=3$" мы показали, что числа $x^2-\sqrt[3]{4} yz$ и $x^4+\sqrt[3]{4} x^2 yz+ (\sqrt[3]{4} yz)^2$ не имеют общих делителей, поэтому из леммы 2 следует, что уравнение (15) имеет ненулевое решение в $\rho$-адических числах для любого нечётного простого идеала $\rho$ кольца $\mathbb{Z}[\sqrt[3]{2}]$.

Мы могли бы доказать разрешимость уравнения (15) в $\rho$-адических числах для чётного простого идеала $\rho$, но в этом нет необходимости.
В кольце $\mathbb{Z}[\sqrt[3]{2}]$ есть только один чётный простой идеал $\rho=(\sqrt[3]{2})$.
Поскольку произведение символов Гильберта $(-1, c)_\rho$, в котором $\rho$ пробегает все простые идеалы и бесконечность, равно 1, а для нечётных простых идеалов и бесконечности, этот символ Гильберта равен 1, то он равен единице и для оставшего единственного чётного простого идеала.

Таким образом, уравнение (15) имеет ненулевое решение во всех локальных пополнениях поля $\mathbb{Q}[\sqrt[3]{2}]$.
Из этого следует, в соответствии с локально-глобальным принципом Хассе, что уравнение (15) имеет ненулевое решение в поле $\mathbb{Q}[\sqrt[3]{2}]$.

Мы доказали:

Лемма 3
-----------

Уравнение (15) имеет ненулевое решение в поле $\mathbb{Q}[\sqrt[3]{2}]$.

Это нетривиальный результат, и я прошу уважаемых форумчан проверить его правильность.

 
 
 
 Re: Новое доказательство ВТФ для n=3
Сообщение08.05.2013, 10:40 
Исправление:

Феликс Шмидель в сообщении #720633 писал(а):
Приступим к доказательству того, что если $x^6-4 (yz)^3=a^2$, то $x^2-\sqrt[3]{4}$ является суммой двух квадратов в локальных полях.


исправляется на:

Цитата:
Приступим к доказательству того, что если $x^6-4 (yz)^3=a^2$, то $x^2-\sqrt[3]{4} yz$ является суммой двух квадратов в локальных полях.



Рассмотрим теперь уравнение:

(16) $X^2+q Y^2-c Z^2=0$,

где $c=x^2-\sqrt[3]{4} yz$, а $q$ - простое число, не имеющее общих делителей с числом $c$ и такое, что $\sqrt[3]{2}$ не существует в $\mathbb{Z}_q$.

Если $\rho$ - нечётный простой идеал кольца $\mathbb{Z}[\sqrt[3]{2}]$, который не является делителем числа $q$, то уравнение (16) имеет решение в $\rho$-адических числах по причине указанной в доказательстве леммы 2.

Если же $\rho$ является делителем числа $q$, то уравнение (16) имеет решение в $\rho$-адических числах, поскольку мы доказали, что $c$ сравнимо с квадратом в кольце $\mathbb{Z}[\sqrt[3]{2}]$ по модулю $q$ (так как $\sqrt[3]{2}$ не существует в $\mathbb{Z}_q$).

Таким образом получим:

Лемма 4
------------

Уравнение (16) имеет ненулевое решение в поле $\mathbb{Q}[\sqrt[3]{2}]$ для любого простого числа $q$, взаимно-простого с $c$ и такого, что $\sqrt[3]{2}$ не существует в $\mathbb{Z}_q$.

 
 
 [ Сообщений: 69 ]  На страницу 1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group