2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Делители [2 вопроса]
Сообщение23.12.2012, 21:42 
Аватара пользователя
1. Пусть $a,b\in A$, где $A$- целостное кольцо, тогда говорят, что $a|b$, где $a,b\ne 0$, если существует $c\in A$, что $b=ca$. Почему понятие делимости имеет смысл вводить только в целостном кольце и для ненулевых элементов? И почему понятие не приводимости имеет смысл определить только в целостном кольце?

2. Пусть $A$- кольцо главных идеалов. Тогда ясно, что для любых двух ненулевых элементов $a,b$ существует наибольший общий делитель. А вот если положить, что для двух ненулевых $a,b$ элементов существует наибольший общий делитель $d$, то верно ли что $(d)=(a,b)$?

 
 
 
 Re: Делители [2 вопроса]
Сообщение23.12.2012, 22:56 
xmaister в сообщении #662591 писал(а):
А вот если положить, что для двух ненулевых $a,b$ элементов существует наибольший общий делитель $d$, то верно ли что $(d)=(a,b)$?
Нет, неверно. Контрпримером будет любое факториальное кольцо, не являющееся кольцом главных идеалов.

 
 
 
 Re: Делители [2 вопроса]
Сообщение24.12.2012, 00:17 
Ненулевые элементы там совершенно зря; если ими ограничиваться, хорошего понятия делимости не получится никак. А вот целостность кольца по делу; без нее совершенно непонятно, как определить ассоциированность: возникает несколько неэквивалентных аналогов без особенно хороших свойств.

 
 
 
 Re: Делители [2 вопроса]
Сообщение24.12.2012, 00:22 
Аватара пользователя
apriv в сообщении #662736 писал(а):
Ненулевые элементы там совершенно зря; если ими ограничиваться, хорошего понятия делимости не получится никак.

Т.е. стоит ограничится только не нулевым делителем?
apriv в сообщении #662736 писал(а):
А вот целостность кольца по делу; без нее совершенно непонятно, как определить ассоциированность:

А это вообще что и зачем это определять?

 
 
 
 Re: Делители [2 вопроса]
Сообщение24.12.2012, 01:15 
В определении выше и делимое, и делитель могут быть нулевыми. В области целостности элементы называются ассоциированными, если они отличаются умножением на обратимый элемент. В факториальном кольце, например, разложение на неприводимые единственно с точностью до перехода к ассоциированным.

 
 
 
 Re: Делители [2 вопроса]
Сообщение24.12.2012, 07:02 
Аватара пользователя
Тогда тем более не понятна мотивация разрешать делить на $0$ и делить $0$. В области целостности тогда на $0$ будет делится только $0$. В факториальном кольце все делители, с точностью до перехода к ассоциированным можно описать по его разложению на неприводимые. А у нуля будут делители все элементы целостного кольца... :?

 
 
 
 Re: Делители [2 вопроса]
Сообщение24.12.2012, 20:27 
xmaister в сообщении #662808 писал(а):
Тогда тем более не понятна мотивация разрешать делить на $0$ и делить $0$.

Не понятна мотивация не разрешать делить на $0$ и делить $0$.

 
 
 
 Re: Делители [2 вопроса]
Сообщение24.12.2012, 20:35 
Ну, делить на ноль, положим, никто и не разрешает — ноль является делителем только ноля. А насчет того, что "все элементы целостного кольца делят ноль" — так это его характерное свойство. Иногда бывает очень полезно для доказательства того, что элемент, на который мы сейчас глядим, является нулем кольца. В конце концов, еще в школе рассказывали, что все числа являются делителями нуля, нет?

 
 
 
 Re: Делители [2 вопроса]
Сообщение25.12.2012, 20:19 
Аватара пользователя
Если добавить, что можно делить нулевые элементы то чем это будет лучше. Просто Ленг пишет:
Изображение

 
 
 
 Re: Делители [2 вопроса]
Сообщение25.12.2012, 20:25 
Есть, например, замечательное свойство: если $a|b$ и $a|c$, то $a|b+c$. Ну и вообще, все элементы, делящиеся на $a$, образуют идеал.

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group