2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Как определить "не принадлежит"?
Сообщение08.12.2012, 21:08 
Xaositect в своем посте все описал просто замечательно. А также аналогии с коробками - удивляюсь, почему нам на первом курсе, когда рассказывали про множества, такую аналогию не проводили - настолько же понятно!
Посидите и попробуйте это осознать, если нужна практическая интерпретация - возвращайтесь к коробкам.

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение08.12.2012, 22:24 
Аватара пользователя

(Оффтоп)

Да, из пустого множества можно построить весь матан... Красотища ведь. Когда топикстартер это поймёт, будет ему счастье ;-)

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 17:57 
Уважаемые софорумники, и все таки у меня остаются вопросы.
Одно из свойств пустого множества гласит:"Пустое множество является подмножеством любого множество".
Если я задал множество $K=\{1,2,3\}$, то эта запись будет некорректной, так как не указал элементом множества пустое множество.
Насколько я понял, пустое множество указывать обязательно. То есть правильно будет $K=\{\varnothing,1,2,3\}$, соответственно булеан будет состоять из $2^4=16$ элементов.

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 17:58 
Побережный Александр
Что означает "Множество $A$ является подмножеством множества $B$"? Дайте определение.

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 18:06 
Подмножество множества В - это такое множество А, каждый элемент которого принадлежит множеству В.
Вроде так, если я нигде не ошибся...

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 18:34 
Аватара пользователя
Побережный Александр в сообщении #656302 писал(а):
Пустое множество является подмножеством любого

Побережный Александр в сообщении #656302 писал(а):
не указал элементом множества пустое множество

Понимаете,
Цитата:
подмножеством

а не
Цитата:
элементом

Ещё раз:
Цитата:
подмножеством

а не
Цитата:
элементом

Не!

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 18:57 
Побережный Александр в сообщении #656302 писал(а):
Если я задал множество $K=\{1,2,3\}$, то эта запись будет некорректной, так как не указал элементом множества пустое множество.
Насколько я понял, пустое множество указывать обязательно. То есть правильно будет $K=\{\varnothing,1,2,3\}$,
Проверяем на коробках:
$K=\{\varnothing,1,2,3\}=\{1,2,3\}$ равносильно тому, что коробка, которая содержит $1,2,3$ содержит то же самое, что и коробка, которая содержит $1,2,3$ и еще пустую коробку. Неверно же! :shock: Хотите, картинку нарисую?

(Оффтоп)

Мне определенно нравится аналогия с коробками. Она настолько проста и понятно, что я верю, что я на ней все объясню ТС! Хотя есть дефект насчет мультимножеств...

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 19:11 
Вот четыре множества $K_1=\{1,2,3\}$, $K_2=\{\varnothing,1,2,3\}$, $K_3=\{\{\varnothing\},1,2,3\}$, $K_4=\{\{\{\{\varnothing\}\}\},1,2,3\}$.
Насколько я понимаю $K_1$ содержит три элемента, остальные по четыре.Причем все эти множества различны. Соответственно булеан первого множества будет содержать восемь элементов, булеаны остальных будут содержать по шестнадцать элементов.
И еще я делаю вывод, что пересечением указанных четырех множеств будет $K_1$.

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 19:35 
Аватара пользователя
Пока остальные участники переводят дух, я за всех порадуюсь: наконец оба вывода верны! Вот ещё бы этот самый булеан - хоть для первого множества, хоть для второго (третьего, четвёртого) записать верно. Сможете?

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 20:30 

(Оффтоп)

Sonic86 в сообщении #656335 писал(а):
Хотя есть дефект насчет мультимножеств...
Почему? Вроде бы порядок.

А ещё наследственно конечные множества можно с помощью деревьев представлять (и тут поможет xymatrix). А такие же мультимножества — деревьями-мультиграфами.

Ради своей практики приведу пример с $\{\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}$:
$$\xymatrix{ 
& {*} \ar[r] & {*} \ar[r] & {*} \\ 
{*} \ar[ur] \ar[dr] & & {*} \ar[r] & {*} \\ 
& {*} \ar[ur] \ar[rr] & & {*} \\ 
}$$
А ещё можно такие представления «сжимать», но получается ненаглядно.
$$\xymatrix{ 
& {*} \ar[dr] & & \\ 
{*} \ar[ur] \ar[dr] & & {*} \ar[dr] & \\ 
& {*} \ar[ur] \ar[rr] & & {*} \\ 
}$$

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 20:54 

(Оффтоп)

arseniiv в сообщении #656379 писал(а):
Почему? Вроде бы порядок.
Не, просто это уже надо объяснять с привлечением логических рассуждений (т.е. надо суметь объяснить, например, что коробка, содержащая две пустые коробки равна коробке, содержащей одну пустую коробку). Для остального понимания на уровне коробок достаточно одного графического анализатора.

arseniiv в сообщении #656379 писал(а):
А ещё наследственно конечные множества можно с помощью деревьев представлять (и тут поможет xymatrix). А такие же мультимножества — деревьями-мультиграфами.
:shock:

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение09.12.2012, 21:20 

(Оффтоп)

Sonic86 в сообщении #656393 писал(а):
(т.е. надо суметь объяснить, например, что коробка, содержащая две пустые коробки равна коробке, содержащей одну пустую коробку)
Так ведь мультимножества такие как раз не равны! Или, получается, вы имели в виду, что коробки будут иметь возможность содержать несколько одинаковых элементов, а понимать их надо будет как множества? Тогда да, получается не очень удобно.

Sonic86 в сообщении #656393 писал(а):
:shock:
Сначала я в тех деревьях сделал вершинами множества, но потом подумал: зачем? Они же всю идею такого представления собой закрывают.

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение10.12.2012, 12:23 
--mS-- в сообщении #656360 писал(а):
Пока остальные участники переводят дух, я за всех порадуюсь: наконец оба вывода верны! Вот ещё бы этот самый булеан - хоть для первого множества, хоть для второго (третьего, четвёртого) записать верно. Сможете?

Я попробую выполнить ваше пожелание немного по другому.
Пусть множество $K=\{A\}$, тогда его булеан будет $M=2^K=\{\varnothing,\{A\}\}$.
Для множества $M$ булеан будет такой $2^M=\{\varnothing, \{\varnothing\}, \{\{A\}\},\{\varnothing,\{A\}\}\}$. Вроде так, если я все правильно понял.
А какую смысловую нагрузку несут двойние скобки $\{\{A\}\}$? Одна пара скобок говорит, что данное множество есть элемент другого множества. Опять же, если я правильно понял.
Если использовать аналогию с коробками, то получаются вложенные друг в друга коробки. Не проще эти вложенные коробки представить как одну, "очень хитрую", коробку?

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение10.12.2012, 12:26 
Аватара пользователя
А это и так одна коробка. В которой лежит другая коробка. В которой лежит $A$, кем бы он ни был.

 
 
 
 Re: Как определить "не принадлежит"?
Сообщение10.12.2012, 12:34 
Грубо говоря, внешняя коробка видит внутри себя только какую-то коробку, даже не предполагая, что находится внутри. И именно внутренняя коробка является элементом для внешней коробки. То, что там сидит А знаем только мы(наблюдатели), организовавшие эту процедуру построения множества.

 
 
 [ Сообщений: 76 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group