2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Что такое ковектор?
Сообщение21.09.2012, 01:41 
Как себе геометрически представить ковектор и чем он отличается от вектора?

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 12:09 
Аватара пользователя
Ковектор -- это тоже вектор)))

Ковектор -- линейная функция на векторном пространстве. /Такие функции тоже образуют векторное пространство. Его называют двойственным к исходному.

Iby в сообщении #621690 писал(а):
Как себе геометрически представить


как угодно... вот как Вы себе представляете $n$-мерное пространство?

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 12:28 
Аватара пользователя
Iby в сообщении #621690 писал(а):
Как себе геометрически представить ковектор и чем он отличается от вектора?
Могу предложить такой вариант: Если вектор - это малый направленный отрезок, то ковектор - это градиент скалярной функции.

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 15:53 
практическая разница между векторами и ковекторами - при преобразовании координат их компоненты преобразуются по разным правилам.

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 16:52 
epros в сообщении #621786 писал(а):
Если вектор - это малый направленный отрезок

обязательно маленький? А не позвать ли нам доктора Фрейда, он тоже большой специалист по длине направленных отрезков.

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 17:22 
Аватара пользователя
Oleg Zubelevich в сообщении #621849 писал(а):
обязательно маленький?
Обязззззательно. Ибо только малые отрезки достаточно хорошо описываются линейными объектами. Мы ведь про «смыслы» и «представления» говорим, а не о формальных определениях? Так что слова «хорошо описываются» допустимы.

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 18:46 
Аватара пользователя
Iby в сообщении #621690 писал(а):
Как себе геометрически представить ковектор и чем он отличается от вектора?

Бёрке (кажется, его порыв не сильно поддержан) предлагал такие геометрические образы:

Ковектор (1-форма):
Изображение

Происхождение обозначения из контурной карты скалярной функции (градиент такой функции есть ковектор, но не всякой ковектор - градиент):
Изображение

пример ковектора, который не градиент:
Изображение

Операции: умножение на коэффициент
Изображение

сложение
Изображение

$a+b+c=0$
Изображение

умножение вектора на ковектор (здесь $(v,a)=2,$ $(w,b)=-3$)
Изображение

Базисные векторы и ковекторы в декартовой системе координат:
Изображение

в произвольной системе координат:
Изображение

Картинка для $a+b+c=0$ после линейного преобразования пространства:
Изображение

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 18:55 
Аватара пользователя
координаты - это для компьютеров

законы природы инвариантны


это был тост

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 21:17 
Munin в сообщении #621908 писал(а):
Бёрке (кажется, его порыв не сильно поддержан) предлагал такие геометрические образы:
Странно. По-моему, удобно!

(Оффтоп)

Осталось разобраться теперь, как можно вот так изобразить билинейную форму (контравариантные бивекторы понятны, не хватает только двойственного). По аналогии как-то не очень получается.

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 21:33 
Аватара пользователя
arseniiv в сообщении #622029 писал(а):
Странно. По-моему, удобно!

По-моему, тоже. Впервые я это увидел у Мизнера-Торна-Уилера в "Гравитации".

arseniiv в сообщении #622029 писал(а):
Осталось разобраться теперь, как можно вот так изобразить билинейную форму (контравариантные бивекторы понятны, не хватает только двойственного). По аналогии как-то не очень получается.

В смысле, 2-форму? Она рисуется как решётка ячеек. Burke. Div, grad, curl are dead. Характеризуют её только ориентация (в т. ч. в 3-мерном и выше пространстве), и плотность ячеек.

Ещё такие картинки были в
Selfridge, Arnold, Warnick. Teaching Electromagnetic Field Theory Using Differential Forms
Edwards. Advanced calculus - a differential forms approach

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 22:14 
Munin в сообщении #622047 писал(а):
В смысле, 2-форму? Она рисуется как решётка ячеек. Burke. Div, grad, curl are dead. Характеризуют её только ориентация (в т. ч. в 3-мерном и выше пространстве), и плотность ячеек.
Спасибо. Теперь всё-таки вижу аналогии немного.

Кстати, глупый вопрос задам: есть осмысленный изоморфизм между $\Lambda^{(\dim V - a)} V$ и $\Lambda^a (V^*)$?

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 22:17 
Аватара пользователя
А это разве не "звёздочка Ходжа"? http://en.wikipedia.org/wiki/Hodge_dual

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 22:48 
Аватара пользователя
arseniiv в сообщении #622082 писал(а):
Кстати, глупый вопрос задам: есть осмысленный изоморфизм между $\Lambda^{(\dim V - a)} V$ и $\Lambda^a (V^*)$?


Задать такой изоморфизм --- это все равно, что задать изоморфизм между одномерным пространством $\Lambda^{(\dim V)}V$ и основным полем. Без дополнительной структуры выделенного изоморфизма нет.

-- 21.09.2012, 23:49 --

Munin в сообщении #622085 писал(а):
А это разве не "звёздочка Ходжа"? http://en.wikipedia.org/wiki/Hodge_dual


Для нее нужна структура евклидова пространства (и тогда можно не различать $V$ и $V^*$).

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 22:56 
Аватара пользователя
g______d в сообщении #622106 писал(а):
Для нее нужна структура евклидова пространства

Я думал, для неё может быть структура слабее чем евклидова. Впрочем, вам виднее.

 
 
 
 Re: Что такое ковектор?
Сообщение21.09.2012, 23:02 
Аватара пользователя
Munin в сообщении #622108 писал(а):
Я думал, для неё может быть структура слабее чем евклидова. Впрочем, вам виднее.


Я не совсем прав, не обязательна евклидова структура, но нужно внутреннее произведение (т. е. не обязательно положительно определенное; например, как в пространстве Минковского).

 
 
 [ Сообщений: 54 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group