2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Производная дельта-функции
Сообщение25.05.2012, 22:01 
Аватара пользователя
ewert в сообщении #576360 писал(а):
Ну а в рамках -- это просто по определению.


по какому определению, можно чуточку поточнее?

Как предел решений для дельтаобразных последовательностей ?
Через перекидывание производных на пробную функцию?

 
 
 
 Re: Производная дельта-функции
Сообщение25.05.2012, 22:23 
Через перекидывание.

 
 
 
 Re: Производная дельта-функции
Сообщение25.05.2012, 22:27 
theambient в сообщении #576365 писал(а):
Через перекидывание производных на пробную функцию?

Именно так. Именно так формально и определяются всевозможные производные от обобщённых функций. Ну а что это определение согласуется (в практических задачках) с аналогичными действиями над приближающими последовательностями, или не согласуется -- вопрос уже следующий.

Вообще-то ни одна формальная теория не обязана (да и не в силах) охватывать все мыслимые области своей применимости. Охватывает -- хорошо; нет -- бум думать дальше.

 
 
 
 Re: Производная дельта-функции
Сообщение25.05.2012, 22:43 
Аватара пользователя
но тем не менее, не совсем понятно как искать эту функцию.

Возьмем упрощенный случай.

$$
   \frac{d}{dx} G = \delta(x)
$$

Как искать эту функцию? Она должна по определению удовлетворять следующему соотношению

$$
\int G \frac{d}{dx} f(x) dx = f(0).
$$

Дальше непонятно, или определение стоит использовать только для проверки? А функцию каким-то образом угадывать?

 
 
 
 Re: Производная дельта-функции
Сообщение25.05.2012, 23:24 
theambient в сообщении #576381 писал(а):
но тем не менее, не совсем понятно как искать эту функцию.

Да никак. Функция Грина, вообще говоря, ровно никак не ищется (кроме очень специальных случаев). С теоретической точки зрения -- достаточно того, что она какая-никакая, но существует. С практической -- она расчётам никак не поможет.

 
 
 
 Re: Производная дельта-функции
Сообщение26.05.2012, 02:59 
Аватара пользователя
theambient в сообщении #576359 писал(а):
откуда это взялось и что за закорючки там написаны мне известно, но не совсем укладывается в голове как это понимать формально

Формально можете считать, что $G$ и $\delta(x-x_0)$ - векторы в каком-то линейном пространстве, а $\Delta$ - оператор в нём же. Соответственно, нахождение $G$ подразумевает вычисление обратного $\Delta^{-1}$ (иногда прямо так напрямую и пишут $\tfrac{1}{\Delta}$). Чтобы его вычислить, надо перейти к базису, в котором он диагонален, в данном случае - совершить преобразование Фурье. Тогда будет всё просто: $\Delta\risingdotseq k^2,\quad\Delta^{-1}\risingdotseq \tfrac{1}{k^2}.$ Всё это получает строгий смысл в функане, но с огромным количеством плясок с бубном в довесок. $\delta(x-x_0)$ - не член векторных пространств обычных функций, но некоторых их расширений - член. $G$ при этом оказывается членом и некоторых векторных пространств обычных функций (правда, не для всех уравнений это справедливо, в ряде случаев функция Грина сама обобщённая, например, записывается через дельта-функции).

-- 26.05.2012 04:10:07 --

ewert в сообщении #576375 писал(а):
Вообще-то ни одна формальная теория не обязана (да и не в силах) охватывать все мыслимые области своей применимости. Охватывает -- хорошо; нет -- бум думать дальше.

Если теория что-то не охватывает, значит, оно не входит в её область применимости.

ewert в сообщении #576394 писал(а):
Функция Грина... С практической -- она расчётам никак не поможет.

В смысле? Как раз для расчётов функция Грина часто очень полезный объект.

ewert в сообщении #576394 писал(а):
Функция Грина, вообще говоря, ровно никак не ищется (кроме очень специальных случаев).

Есть же общая теория, как её искать, для разных дифоператоров и дифуравнений, и граничных задач. По сложности не уступающая другим способам решения этих уравнений, но всё же, не несуществующая.

 
 
 
 Re: Производная дельта-функции
Сообщение03.11.2018, 19:16 
Munin в сообщении #576122 писал(а):
Это основное выражение с производной дельта-функции
$\int_{-\infty}^{+\infty}\delta'(x-x_0)f(x)dx=f'(x_0)$

а если границы интегрирования не $(-\infty;\infty)$, а например, [0,$\alpha$], то производная как будет выглядеть?

 
 
 
 Re: Производная дельта-функции
Сообщение03.11.2018, 19:58 
Аватара пользователя
Если интервал интегрирования строго внутри себя содержит $x_0$ — результат будет тот же самый.
Если точка $x_0$ лежит строго вне интервала $[0, \alpha]$ — будет ноль.
Если точка $x_0$ лежит точно на границе ($x_0=0$ или $x_0=\alpha$), то тут я затрудняюсь сказать. С точки зрения математики это наиболее интересный случай, но с физической точки зрения едва ли у такого интеграла будет смысл. Возможно, будет что-то вроде $\pm \delta(x_0)f(x_0)$.

 
 
 
 Re: Производная дельта-функции
Сообщение03.11.2018, 20:15 
Аватара пользователя
Замечаем, что
$$\int\limits_{-\infty}^{0}\delta'(x-x_0)f(x)dx=-\frac{f'(x_0-0)}{2}б$$
$$\int\limits_{0}^{+\infty}\delta'(x-x_0)f(x)dx=-\frac{f'(x_0+0)}{2}$$
и в свое удовольствие считаем по любому отрезку (используя аддитивность интеграла).

 
 
 
 Re: Производная дельта-функции
Сообщение04.11.2018, 23:10 
worm2 в сообщении #1351478 писал(а):
Если точка $x_0$ лежит точно на границе ($x_0=0$ или $x_0=\alpha$), то тут я затрудняюсь сказать. С точки зрения математики это наиболее интересный случай, но с физической точки зрения едва ли у такого интеграла будет смысл

Вот как раз с физической смысл и есть: физики склонны располовинивать эту дельта-функцию, т.к. в их интуитивном понимании она есть просто бесконечный колокольчик, притом симметричный. А вот с формально-математической -- смысла ровно никакого: для математиков дельта-функция есть некая вестчь в себе, внутренней структуры не имеющая.

 
 
 
 Re: Производная дельта-функции
Сообщение05.11.2018, 02:23 
alcoholist в сообщении #1351482 писал(а):
и в свое удовольствие считаем по любому отрезку (используя аддитивность интеграла)

Ох, сумлеваюся я... По моему скромному мнению (в пределах моих знаний), обобщенные функции --- это непрерывные функционалы на некоторых "пространствах основных функций", которые являются подпространствами в пространстве бесконечно дифференцируемых функций на всей прямой. (Но, может быть, есть и какая-то теория обобщенных функций на сегменте, о которой я не в курсе).

 
 
 
 Re: Производная дельта-функции
Сообщение05.11.2018, 14:40 
Аватара пользователя
ewert в сообщении #1351724 писал(а):
физики склонны располовинивать эту дельта-функцию
С обычной дельта-функцией — это я согласен. А вот как быть с её производной, не понятно. Если брать какие-нибудь канонические гладкие последовательные приближения $d_i(x)\to\delta'(x)$, то они все будут положительными слева и отрицательными справа.

Если взять, например, пробную функцию $f(x)=1-x$ и посчитать от $f(x)d_i(x)$ два интеграла: по $(-\infty, 0)$ и по $(0, +\infty)$, то первый интеграл будет (для достаточно близких приближений) всегда положительным, а второй — всегда отрицательным. Да, их сумма, разумеется, будет стремиться к единице ($-f'(0)$), но по отдельности "половинки" если и будут иметь какие-то пределы, то отличающиеся друг от друга (в то время, как у $f(x)$ производные слева от нуля и справа от нуля равны).

 
 
 [ Сообщений: 27 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group