2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Астроида
Сообщение16.11.2011, 00:56 
Не стоило перерисовывать, я бы почитал.

Да, тогда правильно. Просто у Вас в этом случае $a$ безразмерное (тангенс), а $b$ - длина. Но тогда та первая формула, которую я воспринял как теорему Пифагора, с тремя величинами размерности длина ($a,b,R$, катетами и гипотенузой), видимо, неправильная. Нет, читать сейчас не буду, я тоже спать, от позднего времени.

 
 
 
 Re: Астроида
Сообщение16.11.2011, 01:12 
Алексей К. в сообщении #504343 писал(а):
Не стоило перерисовывать, я бы почитал.

Да, тогда правильно. Просто у Вас в этом случае $a$ безразмерное (тангенс), а $b$ - длина. Но тогда та первая формула, которую я воспринял как теорему Пифагора, с тремя величинами размерности длина ($a,b,R$, катетами и гипотенузой), видимо, неправильная. Нет, читать сейчас не буду, я тоже спать, от позднего времени.


Да, я ошибся с теоремой Пифагора! Та Формула - неправильная

(Оффтоп)

Спокойной ночи! А я еще посижу, подумаю)

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:00 
Аватара пользователя
samuil
Цитата:
$y=ax+b$...
Длина зеленого отрезка равна $\sqrt{b^2+\frac{b^2}{a^2}}$

Сопоставьте теперь с
Цитата:
$x^{2/3}+y^{2/3}=R^{2/3}$

Уравнение касательной
$y = f(x_0) + f'(x_0)(x-x_0)$,

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:03 
Dan B-Yallay в сообщении #504354 писал(а):
Сопоставьте теперь с ...

Спасибо, сейчас сделаю!

-- 16.11.2011, 03:04 --

$a=f'(x_0)$

$b=f(x_0)-x_0\cdot f'(x_0)$

А как дальше сопоставлять?!

-- 16.11.2011, 03:07 --

Конечно, могу подставить выраженные $a=f'(x_0)$ и $b=f(x_0)-x_0\cdot f'(x_0)$ в $\sqrt{b^2+\frac{b^2}{a^2}}$, но получится громоздкое выражение... и не знаю - зачем..

-- 16.11.2011, 03:10 --

Есть идея - посчитать производную в какой-нибудь из этих двух точек $(0,b)$ и $(-\frac{b}{a};0)$ и оттуда что-то выудить....

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:12 
Аватара пользователя
Так. Сейчас из формулы астроиды (в первом квадранте) - выведите $y$ как функцию от $x$.

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:14 
$y={(R^{2/3}-x^{2/3})^{3/2}$

(Оффтоп)

Может и это понадобится


$y'=\dfrac{3}{2}{(R^{2/3}-x^{2/3})^{1/2}\cdot (-\dfrac{2}{3\sqrt[3]{x}})=-\dfrac{\sqrt{R^{2/3}-x^{2/3}}}{\sqrt[3]{x}}$

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:17 
Аватара пользователя
Это и есть Ваша функция $f$ в формуле $y=f(x_0)+f'(x_0)(x-x_0)$. Согласны?

-- Вт ноя 15, 2011 17:19:15 --

samuil писал(а):
Может и это понадобится .....

Абсолютно верно.

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:21 
Dan B-Yallay в сообщении #504359 писал(а):
Это и есть Ваша функция $f$ в формуле $y=f(x_0)+f'(x_0)(x-x_0)$. Согласны?

Согласен!

-- 16.11.2011, 03:23 --

Уравнение касательной

$y={(R^{2/3}-x^{2/3}_0)^{3/2}-\dfrac{\sqrt{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x_0}}(x-x_0)$

$a=-\dfrac{\sqrt{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x_0}}$

$b=...$


А как дальше?

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:25 
Аватара пользователя
Ну ежели согласны, то дальше должно быть понятно: аккуратно подставляем значения производной $f'(x_0)$ и самой функции $f(x_0)$ в $a$ и $ b $ а те - в формулу длины зеленого отрезка и попробуем со всей этой херней взлететь упрощаем до потери пульса (или сознания).

Вижу что $a$ уже нашли. Найдите $b$.

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:29 
$a=-\dfrac{\sqrt{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x_0}}$

$b={(R^{2/3}-x^{2/3}_0)^{3/2}+\dfrac{x_0\sqrt{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x_0}}$


-- 16.11.2011, 03:30 --

Тут такие здоровые формулы получились -- как же их можно упростить и к чему стремиться?!

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:31 
Аватара пользователя
samuil писал(а):
А как дальше?!

Цитата:
$a$ и $ b $ - в формулу длины зеленого отрезка и упрощаем до потери пульса (или сознания).


-- Вт ноя 15, 2011 17:33:40 --

samuil писал(а):
Тут такие здоровые формулы получились -- как же их можно упростить и к чему стремиться?!

А кому счас легко? :D
Если все правильно сделано - должно $R$ получиться как и с самого начала подразумевалось.

Кстати - сначала упростите $b$. Очень легко.

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:35 
Спасибо! Сейчас все сделаю, понятно! Надеюсь, что не утону в вычислениях!

-- 16.11.2011, 03:38 --

$a=-\dfrac{\sqrt{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x_0}}$

$b={(R^{2/3}-x^{2/3}_0)^{3/2}+{\sqrt{(x_0R^2)^{1/3}-x_0}}$

-- 16.11.2011, 03:41 --

Выражение для длины касательного отрезка $\sqrt{b^2+\frac{b^2}{a^2}}$ содержит квадраты величин/

Предварительно вычислим $a^2$ и $b^2$:

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:43 
Аватара пользователя
Упростите $b$!!

$b={(R^{2/3}-x^{2/3}_0)^{3/2}+\dfrac{x_0\sqrt{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x_0}}={(R^{2/3}-x^{2/3}_0)\sqrt{R^{2/3}-x^{2/3}_0}+x_0^{2/3}\sqrt{R^{2/3}-x_0^{2/3}}} = ...$

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:45 
$a^2=(-\dfrac{\sqrt{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x_0}})^2=\dfrac{{R^{2/3}-x_0^{2/3}}}{\sqrt[3]{x^2_0}}$

-- 16.11.2011, 03:46 --

Я же уже упростил $b={(R^{2/3}-x^{2/3}_0)^{3/2}+{\sqrt{(x_0R^2)^{1/3}-x_0}}$

разве можно еще упростить?!

Так-с, пока что в оффтоп поставлю, потому что можно что-то упростить...

(Оффтоп)

$$b^2=\Big((R^{2/3}-x^{2/3}_0)^{3/2}+{\sqrt{(x_0R^2)^{1/3}-x_0}}\Big)^2=(R^{2/3}-x^{2/3}_0)^{3}+2\cdot (R^{2/3}-x^{2/3}_0)^{3/2}\cdot {\sqrt{(x_0R^2)^{1/3}-x_0}}+(x_0R^2)^{1/3}-x_0$$

 
 
 
 Re: Астроида
Сообщение16.11.2011, 02:47 
Аватара пользователя
См. выше и вытаскивайте корень как общий множитель.

Кстати, длину зеленого отрезка я бы тоже упростил:
$$\sqrt{b^2+\frac{b^2}{a^2}}= |b|\sqrt{1+\frac{1}{a^2}}=\dfrac {|b|} {|a|} \sqrt {a^2+1}$$

 
 
 [ Сообщений: 84 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group