2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Максимизировать функцию
Сообщение16.09.2011, 19:07 
Аватара пользователя
Пусть $k\in(0, +\infty)$;
$f:\mathbb{Z^+}\to \mathbb{R^+}$,
$h:\mathbb{N}\to \mathbb{R^+}$,
$g:\mathbb{N}\to \mathbb{R^+}$,
$f_0=N\in \mathbb{N}$,
$f_t=f_{t-1}+h_t$,
$\forall{t}\in \mathbb{N}:f_t>f_{t-1}$,
$\forall{t}\in \mathbb{N}:h_t>0$,
$\forall{t}\in \mathbb{N}:h_t+g_t=kf_{t-1}$;
$\forall{t}\in \mathbb{N}:g_{t+1}>g_t>0$.
Нужно найти такую функцию $g_{t}$, чтобы функция $G_t(m)=\sum_{t=1}^m g_t$ была максимальной $\forall{m\in \mathbb{N}}$.

 
 
 
 Re: Максимизировать функцию
Сообщение19.09.2011, 17:42 
Если я правильно понял условие,функции $f,h$ заданы,из приведенных в условии равенств следует:$f_t+g_t=f_{t-1}+(h_t+g_t)$ или $g_t=(k+1)f_{t-1}-f_t$.Суммируя последнее равенство по $t$ от 1 до $m$ получим $$G(m)=\sum \limits _{t=1}^mg_t=k\sum \limits _{t=1}^{m-1}f_t+(k+1)f_0-f_m$$Т.е.функция $G(m)$ полностью определяется функцией $f$.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 04:33 
Аватара пользователя
mihiv
mihiv в сообщении #484227 писал(а):
функции $f$, $h$ заданы

Они заданы в условии. Точнее, они обе определяются через $g$. Т.е. если мы найдем функцию $g$, то мы автоматом получим $f$ и $h$.


Я сейчас перечитал условие задачи и заметил ошибки. В общем, сейчас переформулирую задачу. Пусть есть вещественное число $k$ из интервала $(0,1)$ и положительное вещественное число $N$. Надо найти такую строго возрастающую функцию $g:\mathbb{N}\to \mathbb{R}$, значения которой положительны, чтобы
1) функция $h:\mathbb{N}\to \mathbb{R}$, такая, что $h_t=k(N+\sum_{i=1}^{t-1} h_i)-g_t$, имела только положительные значения и тоже была бы строго возрастающей;
2) функция $f:\mathbb{N}\to \mathbb{R}$, такая, что $f_t=N+\sum_{i=1}^{t} h_i$, тоже была бы строго возрастающей;
3) сумма $\sum_{t=1}^{m} g_t$ была максимальной для любого натурального $m$.
Т.е. должны выполняться все эти три условия.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 09:06 
Аватара пользователя
Второе условие лишнее: если все h положительны, то автоматически f будет возрастающей. Получается, буква f вообще лишняя.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 13:35 
Аватара пользователя
ИСН
Спасибо, я почему-то это сразу не заметил. Хорошо, второе условие выкидываем. Может есть какие-то идеи как решать?

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 13:46 
Аватара пользователя
Нет. Но есть ощущение, что можно как-то ещё упростить.
Например, формально доопределим h в нуле, а потом сдвинем её на единицу. Выйдет:
$h(1)=N,\,h(t+1)=k\sum\limits_{i=1}^t h(i) - g(t),\,t\in\mathbb N.$
Верно же?
Тогда и требование положительности для неё отпадает, т.к. уже содержится в требовании возрастания.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 13:51 
Аватара пользователя
ИСН
Да, верно, спасибо.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 14:12 
Аватара пользователя
Ну а тогда остаётся максимизация линейной функции многих переменных при множестве линейных же ограничений. На это была какая-то теория.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 14:22 
Аватара пользователя
Еще можно от суммы избавиться.
$$h_{t+1}=k \sum_{i=1}^t h_i-g_t=k \sum_{i=1}^{t-1} h_i-g_{t-1}+g_{t-1}+kh_t-g_t=h_t+g_{t-1}+kh_t- g_t=(k+1)h_t+g_{t-1}-g_t,$$
где $t>1$ натуральное число.

-- 20.09.2011, 15:40 --

ИСН
Тогда получается, что это задача линейного программирования. Я правильно понимаю? Но тут еще фишка в том, что у меня сумма должна быть максимально возможной для всех $m$ одновременно, а не для каждого $m$ в отдельности. То есть, можно найти максимум, например, для $m=10$, но не факт, что при тех значениях $g_t$ ($t<11$), которые мы найдем, сумма для $m=100$ будет тоже максимально возможной. Вот как-то так.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 18:46 
Аватара пользователя
ИСН в сообщении #484464 писал(а):
Нет. Но есть ощущение, что можно как-то ещё упростить.
Например, формально доопределим h в нуле, а потом сдвинем её на единицу. Выйдет:
$h(1)=N,\,h(t+1)=k\sum\limits_{i=1}^t h(i) - g(t),\,t\in\mathbb N.$
Верно же?
Тогда и требование положительности для неё отпадает, т.к. уже содержится в требовании возрастания.

Нет, все таки так нельзя. Потому что получается, что $h(2)$ должна быть обязательно больше $N$, а мне так не надо.

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 19:16 
Аватара пользователя
А, да, вижу. Ну значит, описать словами как-то типа "возрастающая начиная с 2".
Что же до максимизации всего сразу, то эту задачу, кажется, пытался решить Госплан СССР. "Конец немного предсказуем."

 
 
 
 Re: Максимизировать функцию
Сообщение20.09.2011, 19:21 
Аватара пользователя
Итак, еще раз переформулирую условие задачи.

Пусть есть вещественное число $k$ из интервала $(0,1)$ и положительное вещественное число $N$. Надо найти такую строго возрастающую функцию $g:\mathbb{N}\to \mathbb{R}$, значения которой положительны, чтобы
1) функция $h:\mathbb{N}\to \mathbb{R}$, такая, что $h_t=k(N+\sum_{i=1}^{t-1} h_i)-g_t$, имела только положительные значения и тоже была бы строго возрастающей;
2) сумма $\sum_{t=1}^{m} g_t$ имела максимально возможное значение сразу для всех натуральных $m$.

Попробую выразить $h$ через $g$:
$$h_{t+1}=k(N+\sum_{i=1}^{t} h_i)-g_{t+1}=k(N+\sum_{i=1}^{t-1} h_i)-g_t+g_t+kh_t-g_{t+1}=(k+1)h_t+g_t-g_{t+1}.$$
$$h_1=kN-g_1$$
$$h_2=k(k+1)N-kg_1-g_2$$
$$h_3=k(k+1)^2N-k(k+1)g_1-kg_2-g_3$$
$$...$$
$$h_t=k(k+1)^{t-1}N-k\sum_{i=1}^{t-1}(k+1)^{t-1-i}g_i-g_t$$

-- 20.09.2011, 20:40 --

Так, теперь потребуем чтобы $h$ была строго возрастающей: $h_{t+1}>h_t$.
Следовательно $(k+1)h_t+g_t-g_{t+1}>h_t$, т.е. $kh_t>g_{t+1}-g_t$. (Кстати, отсюда сразу следует, что $h$ будет автоматом принимать только положительные значения, т.к. $g_{t+1}>g_t$). Итак, подставим $h_t$ в неравенство выше:
$$k^2(k+1)^{t-1}N-k^2\sum_{i=1}^{t-1}(k+1)^{t-1-i}g_i-kg_t>g_{t+1}-g_t.$$
Таким образом, получим следующее условие:
$$k^2(k+1)^{t-1}N>k^2\sum_{i=1}^{t-1}(k+1)^{t-1-i}g_i+(k-1)g_t+g_{t+1}$$
для любого натурального $t$.

-- 20.09.2011, 20:49 --

Как дальше решать?

-- 20.09.2011, 21:16 --

ИСН в сообщении #484580 писал(а):
Что же до максимизации всего сразу, то эту задачу, кажется, пытался решить Госплан СССР. "Конец немного предсказуем."

Не понял, это к чему было?

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group