2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Размерность пространства матриц с нулевым следом
Сообщение29.07.2011, 20:05 
Аватара пользователя
Сомневаюсь в решении.

Задача 1. Какова размерность пространства вещественных квадратных матриц порядка $n$ с нулевым следом?

Такая матрица $(a_{ij})$ определяется всеми элементами кроме одного на диагонали (пусть $a_{11}$), который подбирается, чтобы сделать след нулевым. Базисом будут матрицы $E_{ij}$, $i,j=\overline{1,n}$ кроме $i=j=1$; их $n^2-1$.

Задача 2. Какова размерность пространства всех многочленов $f(t)$ степени $\le n$ от одной переменной с условием $f(1)=0$?

Аналогично получил $n-1$ (подбираем один коэффициент).

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение29.07.2011, 20:20 
Почти все правильно, только базисом будут $E_{ij}, i \neq j$ и $E_{11} - E_{ii},\ i = 1, \ldots, n - 1$.

Многочлен порядка $n$, кстати, полностью определяются своими значениями в фиксированных $n$ точках (многочлен Лагранжа) - тут даже и думать почти не надо :)

Статья про многочлен Лагранжа и китайскую теорему об остатке: http://www.artofproblemsolving.com/Foru ... hp?b=10595

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 10:21 
Аватара пользователя
Спасибо. Я совсем туплю: не удосужился проверить соответствие даже базисных векторов нужным условиям.

Во второй задаче базисом будут $n-1$ многочленов $x-1$, $x^2-1$, ..., $x^n-1$?

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 10:45 
Аватара пользователя
caxap в сообщении #472043 писал(а):
Какова размерность пространства всех многочленов $f(t)$ степени $\le n$ от одной переменной с условием $f(1)=0$?

Аналогично получил $n-1$ (подбираем один коэффициент).
А сколько коэффициентов у многочлена степени $n$?

Kallikanzarid в сообщении #472046 писал(а):
Многочлен порядка $n$, кстати, полностью определяются своими значениями в фиксированных $n$ точках (многочлен Лагранжа) - тут даже и думать почти не надо
Вы гипнотизируете друг друга, что ли?

caxap в сообщении #472134 писал(а):
Во второй задаче базисом будут $n-1$ многочленов $x-1$, $x^2-1$, ..., $x^n-1$?
Посчитайте, сколько тут у Вас многочленов.

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 10:55 
Аватара пользователя
Someone в сообщении #472142 писал(а):
Посчитайте, сколько тут у Вас многочленов.

Ой, извиняюсь :oops: Их $n$.

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 11:38 
Обе задачки -- на одну ту же тему. В обоих случаях искомое подпространство -- это ядро некоторого линейного функционала. Естественно, что его размерность равна просто размерности всего пространства минус единица, а чему же ещё-то. Зачем ещё базисы какие-то?...

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 12:43 
Someone
Бывает :)

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 13:07 
ewert в сообщении #472148 писал(а):
Обе задачки -- на одну ту же тему. В обоих случаях искомое подпространство -- это ядро некоторого линейного функционала. Естественно, что его размерность равна просто размерности всего пространства минус единица, а чему же ещё-то. Зачем ещё базисы какие-то?...

Или еще более простым языком: поверхность определяется одним уравнением, значит размерности равна размерности пространства минус один.

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 13:13 
Padawan в сообщении #472165 писал(а):
Или еще более простым языком: поверхность определяется одним уравнением, значит размерности равна размерности пространства минус один.

С какого перепугу это вдруг проще?

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 13:24 
Kallikanzarid в сообщении #472168 писал(а):
С какого перепугу это вдруг проще?

Это действительно в некотором смысле проще (хотя и весьма неаккуратно сформулировано).

Проще в том отношении, что не требует понятия функционала (которое хотя и просто, но далеко не во всех курсах ЛА вводинся). Здесь ссылка на гораздо более общеупотребительный факт -- на то, что размерность пространства решений однородной системы есть коранг матрицы системы. А раз уравнение только одно, т.е. матрица состоит лишь из одной строки, то и её ранг равен единице. Собственно, на этом и основывается утверждение про ядро функционала. Т.е. ссылаться на функционал проще формально, но логически этот факт возникает позже.

 
 
 
 Re: Размерность пространства матриц с нулевым следом
Сообщение30.07.2011, 15:29 
Аватара пользователя
ewert
Padawan
Спасибо.

ewert в сообщении #472148 писал(а):
Зачем ещё базисы какие-то?...

В задаче ещё требовалось базис найти, я просто не стал писать.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group