2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Полный разбор парадокса Рассела
Сообщение27.07.2011, 18:44 
Аватара пользователя
Лукомор в сообщении #471537 писал(а):
Знаете, когда не возникает парадокс?
Ёлы-палы, Лукомор, читайте внимательно формулировку парадокса и не засоряйте тему своими фантазиями на вольную тему.

Брадобрей:
Бреет всех тех и только тех людей, которые не бреют себя.

Множество Рассела:
Содержит все те и только те множества, которые не содержат себя.

anik в сообщении #471554 писал(а):
Мы можем подставить $x$ с обеих сторон, если отношение $x \dagger x$ рефлексивно.
А дайте-ка определение рефлексивного отношения (если не сообразите сами, можете википедию процитировать).

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение27.07.2011, 19:02 
anik в сообщении #471554 писал(а):
Например, в Ассемблере: add r1,r2 ; это операция сложения.

Это потому, что Вы путаете очень разные вещи -- машинные операции и математические. Машинное сложение -- логически более сложное понятие, чем математическое: оно представляет собой собственно математическое сложение плюс присваивание.

anik в сообщении #471554 писал(а):
понятия отношения и операции не определяются, возможно они первичные.

Очень даже определяются. Скажем, операция -- это просто отображение пары объектов (если она бинарная) в третий. И ничего она со своими операндами (т.е. аргументами) не делает, она их просто отображает.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение27.07.2011, 20:07 
Аватара пользователя
vek88 в сообщении #471547 писал(а):
epros в сообщении #469799 писал(а):
Никакая многозначная логика, включая логику с континуумом значений (типа fuzzy или вероятностной) не избавит от этого парадокса. Всё равно $K \in K \leftrightarrow K \notin K$ будет выводимо в этой логике из указанной Вами аксиомы.
epros
Ну Вы сказали. В К-системах именно многозначная логика избавляет от этого парадокса. В том смысле, что выводимо это будет, но будет лишь означать неразрешимость $K \in K$.
Если часы пробили 13 раз, то ... (с).

Если в логической системе выводимо абсурдное утверждение, то это может означать только одно - на выводы этой логической системы полагаться нельзя.

Продемонстрирую на примере вероятностной логики. Если заложить схему аксиом "наивной теории множеств": $\exists y \forall x ~ [x \in y \leftrightarrow \varphi(x)]$ (в терминах вероятностной логики это запишется как $p\{\exists y \forall x ~ [x \in y \leftrightarrow \varphi(x)]\} = 1$), то отсюда известным образом выведется существование такого $y$, для которого $y \in y \leftrightarrow y \notin y$. Думаете, это означает равенство $p\{y \in y\} = p\{y \notin y\}$, т.е. $p\{y \in y\} = 0.5$? А вот и нетушки. Объясняю:

$a \leftrightarrow b$ можно заменить на $(a \land b) \lor (\neg a \land \neg b)$. По формуле вероятности логической суммы, с учетом того, что $a \land b$ и $\neg a \land \neg b$ несовместны: $p\{(a \land b) \lor (\neg a \land \neg b)\} = p\{a \land b\} + p\{\neg a \land \neg b\}$. Далее, заменяя $\neg a \land \neg b$ на $\neg(a \lor b)$: $p\{a \leftrightarrow b\} = 1 - p\{a \lor b\} + p\{a \land b\}$. Теперь подставим $\neg a$ вместо $b$: $p\{a \leftrightarrow \neg a\} = 1 - p\{a \lor \neg a\} + p\{a \land \neg a\} = 1 -1 + 0 = 0$. Что и следовало ожидать - абсурдное утверждение имеет нулевую вероятность. Так что $p\{y \in y \leftrightarrow y \notin y\} = 0$ и, как ни крути, с доказанностью $y \in y \leftrightarrow y \notin y$ это никак не уживается.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение27.07.2011, 23:35 
epros в сообщении #471593 писал(а):
vek88 в сообщении #471547 писал(а):
epros в сообщении #469799 писал(а):
Никакая многозначная логика, включая логику с континуумом значений (типа fuzzy или вероятностной) не избавит от этого парадокса. Всё равно $K \in K \leftrightarrow K \notin K$ будет выводимо в этой логике из указанной Вами аксиомы.
epros
Ну Вы сказали. В К-системах именно многозначная логика избавляет от этого парадокса. В том смысле, что выводимо это будет, но будет лишь означать неразрешимость $K \in K$.
Если часы пробили 13 раз, то ... (с).

Если в логической системе выводимо абсурдное утверждение, то это может означать только одно - на выводы этой логической системы полагаться нельзя.

Продемонстрирую на примере вероятностной логики. Если заложить схему аксиом "наивной теории множеств": $\exists y \forall x ~ [x \in y \leftrightarrow \varphi(x)]$ (в терминах вероятностной логики это запишется как $p\{\exists y \forall x ~ [x \in y \leftrightarrow \varphi(x)]\} = 1$), то отсюда известным образом выведется существование такого $y$, для которого $y \in y \leftrightarrow y \notin y$. Думаете, это означает равенство $p\{y \in y\} = p\{y \notin y\}$, т.е. $p\{y \in y\} = 0.5$? А вот и нетушки. Объясняю:

$a \leftrightarrow b$ можно заменить на $(a \land b) \lor (\neg a \land \neg b)$. По формуле вероятности логической суммы, с учетом того, что $a \land b$ и $\neg a \land \neg b$ несовместны: $p\{(a \land b) \lor (\neg a \land \neg b)\} = p\{a \land b\} + p\{\neg a \land \neg b\}$. Далее, заменяя $\neg a \land \neg b$ на $\neg(a \lor b)$: $p\{a \leftrightarrow b\} = 1 - p\{a \lor b\} + p\{a \land b\}$. Теперь подставим $\neg a$ вместо $b$: $p\{a \leftrightarrow \neg a\} = 1 - p\{a \lor \neg a\} + p\{a \land \neg a\} = 1 -1 + 0 = 0$. Что и следовало ожидать - абсурдное утверждение имеет нулевую вероятность. Так что $p\{y \in y \leftrightarrow y \notin y\} = 0$ и, как ни крути, с доказанностью $y \in y \leftrightarrow y \notin y$ это никак не уживается.
epros

Предлагаю уточнить, чем мы тут (в этой теме) занимаемся: голой полемикой или выяснением истины?

Если полемикой, то задача состоит в том, чтобы утопить собеседников всеми приемлемыми способами. В частности, посредством специально подобранных максимально запутанных и усложненных примеров.

Что касается меня, мне голая полемика не интересна (хотя отдельные полемические приемы мне не чужды).

Так вот, постараюсь быть ближе к делу и спрошу Вас, а с какого такого перепугу нам для выяснения истины нужно так усложнять примеры - до того, что мы сами перестаем понимать суть?

Так что беру простейший пример - логику с тремя значениями: $T, F, U$ (истинно, ложно, неразрешимо). И никаких аксиоматик!!! Вместо этого примем истиностную таблицу для отрицания: $$\neg T = F, \neg F = T, \neg U =U.$$ИМХО именно такая таблица для отрицания в трехзначной логике Клини. Предположим также, что любое высказывание может принимать одно и только одно истиностное значение (в частности, высказывание не может быть истинным и ложным одновременно).

Далее, предположим, что мы тем или иным способом доказали теорему (возможно, метатеорему): если $A$ истинно, то истинно $\neg A$.

Что следует из этой теоремы? А следует то, что $A$ не может быть истинным.

Аналогично, из теоремы: если $\neg A$ истинно, то истинно $A$ заключаем, что $A$ не может быть ложным.

В итоге $A$ неразрешимо. И никакого абсурда.

ЗЫ. Здесь я простым языком изложил смысл логики К-систем.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение28.07.2011, 08:31 
Аватара пользователя
vek88, если Вам мой пример показался дюже сложным, то мне тут сказать особо нечего. :wink:

Что касается Вашего примера, в котором "никакого абсурда", то изложите пожалуйста "простым языком", каково в этом примере будет истинностное значение высказывания $A \leftrightarrow \neg A$.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение28.07.2011, 16:48 
epros в сообщении #471661 писал(а):
vek88, если Вам мой пример показался дюже сложным, то мне тут сказать особо нечего. :wink:

Что касается Вашего примера, в котором "никакого абсурда", то изложите пожалуйста "простым языком", каково в этом примере будет истинностное значение высказывания $A \leftrightarrow \neg A$.
epros

Ню-ню! Я ведь предупредил Вас - никакой аксиоматизации.

Хотя, впрочем, готов ответить на Ваш вопрос ... при условии, что Вы ответите на следующий вопрос: каково истинностное значение, ну например, теоремы:

если множество ограничено сверху, то оно имеет и точную верхнюю границу.

ЗЫ 1. Взял первую попавшуюся попсовую (в смысле post469610.html#p469610) теорему (см. Фихтенгольц).

ЗЫ 2. А вообще то утверждение (=теорема) если истинно $A$, то истинно $B$ считается хорошо понятным даже и ежу. ИМХО Вы просто заблудились в своих аксиоматических болотах. И уже шагу ступить не можете, не сверив его - к месту или не к месту - с какой-либо аксиоматикой.

epros в сообщении #471765 писал(а):
vek88 в сообщении #471761 писал(а):
при условии, что Вы ответите
Давайте Вы не будете ставить мне тут условий, ибо мне препираться с Вами неохота. Либо у Вас есть готовый ответ на этот элементарный вопрос и Вы его даёте, либо я принимаю к сведению, что ответа у Вас нет, и все дальнейшие Ваши попытки пообсуждать парадокс Рассела (или брадобрея) буду рассматривать как троллинг.
Какие мы страшные. И даже угрожаем тут.

Итак, Вы ляпнули глупость ... точнее задали глупый вопрос. А я на глупые вопросу не отвечаю. Вы ведь знаете пословицу ... один умник задаст вопрос - сто профессоров не ответят.

А чтобы не оставлять общественность в неведении относительно Вашей глупости, на досуге рассмотрю Вашу глупость подробно в своей теме Основания математики - элементарное рассмотрение.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение28.07.2011, 16:59 
Аватара пользователя
vek88 в сообщении #471761 писал(а):
при условии, что Вы ответите
Давайте Вы не будете ставить мне тут условий, ибо мне препираться с Вами неохота. Либо у Вас есть готовый ответ на этот элементарный вопрос и Вы его даёте, либо я принимаю к сведению, что ответа у Вас нет, и все дальнейшие Ваши попытки пообсуждать парадокс Рассела (или брадобрея) буду рассматривать как троллинг.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение28.07.2011, 19:18 
epros

Как и обещал, начал обсуждать Вас в своей теме post471803.html#p471803.

Поясню, почему хочу это делать на своем поле. ИМХО именно в К-системах легко простым языком показать (планирую это сделать поэтапно), что Вы зря требуете истинностное значение теоремы. Т.е. Вы, разумеется, можете требовать, но Ваше требование в общем случае незаконно.

Кроме того, ИМХО моя тема более подходит для рассмотрения парадокса Рассела в контексте возникших у нас с Вами разногласий.

Итак, до встречи в моей теме.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение29.07.2011, 19:09 
epros

На конкретном простом примере в post472027.html#p472027 показал бессмысленность Вашего вопроса об истинностном значении в Вашем сообщении post471661.html#p471661.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение30.07.2011, 10:00 
epros в сообщении #471661 писал(а):
vek88, если Вам мой пример показался дюже сложным, то мне тут сказать особо нечего. :wink:

Что касается Вашего примера, в котором "никакого абсурда", то изложите пожалуйста "простым языком", каково в этом примере будет истинностное значение высказывания $A \leftrightarrow \neg A$.
Виноват, epros!

Как-то сразу не смог догадаться о причине Вашего заблуждения. И вот только сейчас до меня дошла вся глубина Вашей мысли об "истинностном значении высказывания $A \leftrightarrow \neg A$".

Все оказывается просто - Вы просто путаете две, в общем случае, большие разницы: логику и металогику.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение31.07.2011, 23:31 
Аватара пользователя
epros в сообщении #471575 писал(а):
Брадобрей:
Бреет всех тех и только тех людей, которые не бреют себя.


В тот отрезок времени, когда брадобрей бреет себя, он не бреет кого-либо другого.
А для того, чтобы брить себя, не обязательно быть брадобреем.
Нужно различать глаголы:"брить себя" и "брить кого-либо другого (не себя)".
Когда брадобрей "бреет всех тех и только тех (не себя), кто не бреет себя" - он брадобрей.
Когда брадобрей бреет себя, он не бреет никого из всех тех и только тех (других, не себя) кто не бреет себя сам.
В этот момент он брадобреем не является, т.к. "бреет себя сам" - значительная часть населения острова,
причём никто из них брадобреем не является.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение01.08.2011, 09:10 
Аватара пользователя

(Лукомор:)

epros в сообщении #471575 писал(а):
... не засоряйте тему своими фантазиями на вольную тему

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение23.10.2011, 20:33 
Аватара пользователя
Иногда просто умиляют завихрения большинства дискуссий (более подробно см. в окочание темы «Дайте рецензию на работу Зенкина», за что получен пинок от уважаемого модератора Jnrty)

Как же многообещающе звучала исходная тема: «Полный разбор парадокса Рассела» (ах как было все красиво, триумфально, горделиво - в воздух чепчики и крики Ура-а-а!) И ей было уделено аж целых 6 сообщений! Затем уважаемый epros произнес роковое заклинание «брадобрей», от этого поводья диспута вдруг перекосились и телега на 20 сообщений закрутилась в бесконечном ЗАНОСЕ вокруг неразрешимых проблем брадобреев (шуточное упрощение самого Рассела) – распальцовка, крест на пузе, жизнь бурлила как в джакузи... и все вдруг умерло!?

Есть предложение вернуться к истоку и (для реального начала) рассмотреть вопрос о методическом соотношении парадокса Рассела и теоремы о множестве подмножеств.

Подход А. В парадоксе Рассела мы имеем:
1. Предположение о том, что множество ВСЕХ множеств существует.
2. Деление этого множества ВСЕХ множеств на 2 категории: ВСЕХ множеств, включающих чего-то, и ВСЕХ множеств, не включающих чего-то.
3. Постановка вопроса, относится ли множество типа 2 к 1-ой или 2-ой категории?
4. Получение противоречия.

Подход Б. В теореме о множестве подмножеств мы имеем:
1. (неявное) Предположение о том, что множество ВСЕХ подмножеств существует (о различиях в целеполагании см. ниже).
2. Деление этого множества ВСЕХ подмножеств на 2 категории: ВСЕХ подмножеств, включающих чего-то, и ВСЕХ подмножеств, не включающих чего-то.
3. Постановка вопроса, относится ли множество типа 2 к 1-ой или 2-ой категории?
4. Получение противоречия.

Хотелось бы, чтобы наиболее системно и дисциплинированно мыслящие участники математических форумов простенько так, на пальцах (без апелляции к формальным системам) объяснили широкой любознательной общественности:
1) принципиальное методическое различие подходов А и Б с учетом ограничений двукратного использования квантора всеобщности (пп. 1, 2, в бесконечном случае);
2) разъяснить проблему предикати́вности или импредикати́вности постановки вопроса п.3.
Просьба также не апеллировать к различиям в исходном целеполагании: в случае А такого нет (просто парадоксально), а в случае Б есть (доказательство неэквивалентности).

Кроме того, раз уж исходно сформулировано «полный разбор», так давайте же полный (а не 26 сообщений), а то кто-нибудь потом будет формулировать новые темы с уточнениями: «неполный», «частичный», «ограниченный» и т.п. разборы. Надо же, наконец-то, господа, поставить окончательную точку в данном вопросе, чтобы никогда в истории несчастного человечества уже никакие вопросы ни у кого более не возникали!?

P.S. Здесь было бы уместно также поразмышлять и о системах организации научных диспутов, исключающих отмеченные ЗАНОСЫ. Но опасаюсь, что уважаемые модераторы за превышение полномочий сошлют меня пожизненно в Пуграторий без права переписки.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение23.10.2011, 23:54 
Аватара пользователя
aku в сообщении #495470 писал(а):
Подход А. В парадоксе Рассела мы имеем:
1. Предположение о том, что множество ВСЕХ множеств существует.
2. Деление этого множества ВСЕХ множеств на 2 категории: ВСЕХ множеств, включающих чего-то, и ВСЕХ множеств, не включающих чего-то.
3. Постановка вопроса, относится ли множество типа 2 к 1-ой или 2-ой категории?
4. Получение противоречия.

Подход Б. В теореме о множестве подмножеств мы имеем:
1. (неявное) Предположение о том, что множество ВСЕХ подмножеств существует (о различиях в целеполагании см. ниже).
2. Деление этого множества ВСЕХ подмножеств на 2 категории: ВСЕХ подмножеств, включающих чего-то, и ВСЕХ подмножеств, не включающих чего-то.
3. Постановка вопроса, относится ли множество типа 2 к 1-ой или 2-ой категории?
4. Получение противоречия.
А давайте Вы сначала очень аккуратно изложите нам оба рассуждения (не забыв сначала точно сформулировать доказываемые утверждения), а потом мы уже будем что-то обсуждать. А так Ваше требование сильно смахивает на провокацию.

aku в сообщении #495470 писал(а):
(неявное) Предположение
В математике за неявные предположения бьют подсвечниками.

 
 
 
 Re: Полный разбор парадокса Рассела
Сообщение24.10.2011, 21:03 
Аватара пользователя
Что-то заглючило на сайте, для цитирования выдается только первая страница диспута, придется цитировать по тексту.

Г-н Someone пишет "В математике за неявные предположения бьют подсвечниками."
Извините, сударь, я вас чем-то лично обидел в связи с подобными с Вашей стороны предъявами? Вроде бы лично к Вам я всегда относился достойно в немногочисленных комментариях? Докладываю: никогда в своей сверхдолгой жизни не привык терпеть подобные вызовы даже от Генеральных Секретарей Всех Внегалактических Цивилизаций. Действительно, в моем доме есть медные подсвечники. Поэтому я не стал утруждать глубокоуважаемого Вас в данной нелегкой миссии, а взял правой рукой и ударил себя медным подсвечником в район отведения Р4 (способны найти эту зону на скальпе по Яндексу или нет?). Сильного кровотечения не было, но возник порез и опухоль. Можете лично убедиться, пошлите мне личное сообщение, и я вышлю адрес для стрелки (слабо,что ли?). Но вследствие моего патологического сапиенсолюбия я не потребую от вас в ответ за данный наглый вызов аналогичным образом сделать харакири. За ваш базар, сударь, следует отвечать!" и, подчас, очень больно.

Г-н Someone пишет "А так Ваше требование сильно смахивает на провокацию." - эта сентенция, наверняка, взята из "Материализм и эмпириокритицизм" нашей далекой юности.

Г-н Someone пишет "не забыв сначала точно сформулировать доказываемые утверждения"
А связи с вышеотмеченным неизмеримо благожелательным моим отношением к Вашей персоне
покорнейше прошу уточнить, какой из приведенных 4-пунктов конкретно вы просите уточнить и в каком именно смысле?

Хотелось бы также услышать мнение и других участников данной темы, поскольку господин Someone появлялся в ней только один раз (из 26 сообщений): в частности: делать ли Someone харакири или не подождать? .

 
 
 [ Сообщений: 59 ]  На страницу Пред.  1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group