2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Максимизация выражения при ограничениях...
Сообщение15.05.2011, 11:42 
надо найти при каких $M_n$ выражение

$\sum\limits_{n=1}^{N} M_n^2 p_n$

имеет максимум если

$\sum\limits_{n=1}^{N} M_n p_n= const$
$\sum\limits_{n=1}^{N} p_n = 1$

Спасибо.

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение15.05.2011, 11:51 
Второе выражение определяет семейство гиперплоскостей, третье - одну гиперплоскость; вместе они определяют семейство (N-2)-плоскостей. Ваша квадратичная функция имеет на каждой такой гиперплоскости одну точку глобального минимума, координаты которой определяются обычным образом, через условие стационарности.

Алгоритм решения:
1) Выразите $p_N$ и $p_{N-1}$ через $p_1,\ldots,p_{N-2}$
2) Вычислите дифференциал функции $F$ - композиции исходной функции и найденной в (1) подстановки
3) Решите линейное уравнение $\mathrm{d}F \equiv 0$.

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение15.05.2011, 12:07 
st256 в сообщении #446021 писал(а):
имеет максимум если

Случайно не минимум, наоборот? И что насчёт знаков? (в частности, предполагается ли $p_k>0$?)

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение15.05.2011, 14:41 
Kallikanzarid в сообщении #446022 писал(а):
Ваша квадратичная функция имеет на каждой такой гиперплоскости одну точку глобального минимума.


Извините, а Вы уверены, что именно минимума, а не максимума? Из задачи вытекает вроде как раз максимум. Я, правда, может что-то неправильно вывел...

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение15.05.2011, 15:10 
st256
Да, это я ошибся, у нас же линейное уравнение с коэффициентами вида $M^2$, а не квадратичное уравнение с коэффициентами вида $p$ :)

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение15.05.2011, 15:11 
Аватара пользователя
Kallikanzarid в сообщении #446022 писал(а):
Второе выражение определяет семейство гиперплоскостей, третье - одну гиперплоскость

Это если бы переменными были $p_i$. Но тогда целевая функция и уравнения связи линейны, какие тут минимумы максимумы? Если же переменные $M_i$, как сказано, то может быть всё: минимум, максимум и ничего не быть.
Мне кажется, задача переврана.

PS. Не вник, что сумма $p_i$ равна 1, а не просто константе. Ну, тогда может быть всё кроме максимума.

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение15.05.2011, 19:43 
bot в сообщении #446082 писал(а):
PS. Не вник, что сумма $p_i$ равна 1, а не просто константе.

Да это не важно, это вопрос масштабирования. Но мой предыдущий вопрос насчёт положительностей -- остаётся в силе.

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение16.05.2011, 14:13 
Аватара пользователя
Маштабирование не сделает единицу отрицательной.

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение16.05.2011, 14:53 
bot в сообщении #446355 писал(а):
Маштабирование не сделает единицу отрицательной.

Ну можно же умножить все равенства на минус единицу (вообще на любые константы по желанию). Смысл задачи принципиально не изменится.

А вот знакопостоянство всех $p_k$ -- принципиально. Если предположить, что они положительны,то всё просто. Фактически надо найти максимум отношения первой суммы к квадрату второй (и при каком наборе коэффициентов он достигается). Или, что то же -- минимум обратного отношения. Однако обратное отношение -- это фактически $\dfrac{(\vec a,\vec b)^2}{\|\vec a\|^2\|\vec b\|^2}$, где $\vec a=(\sqrt p_1,\sqrt p_2,\ldots,\sqrt p_N)$ и $\vec b=(M_1\sqrt p_1,M_2\sqrt p_2,\ldots,M_N\sqrt p_N)$.

Теперь если коэффициенты $M_k$ могут иметь произвольные знаки, то минимум обратного отношения достигается на ортогональных векторах, т.е. равен нулю. Соответственно, максимум прямого отношения вообще не достигается -- он равен бесконечности.

Если потребовать, чтобы коэффициенты $M_k$ были неотрицательны, то минимум отношения достигается, когда $\vec b$направлен вдоль одного из координатных ортов, для которого угол с вектором $\vec a$ наименее острый. Т.е. все $M_k$ должны быть равны нулю, кроме одного -- того, который умножается на наименьший из $p_k$.

А вот если заменить в исходном условии слово "максимум" на слово "минимум", то в оптимальном случае эти векторы должны оказаться параллельными, т.е. должно быть $M_k=\mathrm{const}$.

Поэтому я и задавал все эти вопросы -- насчёт знаков и максимумов/минимумов.

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение16.05.2011, 15:49 
Аватара пользователя
Умножение на $-1$ изменит знак целевой функции и соответственно максимум с минимумом поменяются местами.

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение17.05.2011, 08:31 
Аватара пользователя
При
$M_k=C/p_k
M_j=0
j \neq k$
где $k=argmin_i |p_i| $

В общем, "должен остаться только один".

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение17.05.2011, 10:03 
Евгений Машеров в сообщении #446621 писал(а):
где $k=argmin_i |p_i| $

$2-1=1;\ \  2M_1-M_2=C\,;$

$2M_1^2-M_2^2=2M_1^2-(2M_1-C)^2=-2(M_1-C)^2+C^2=\max\,;$

$M_1=C,\ M_2=C.$

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение17.05.2011, 10:39 
Аватара пользователя
Да, что-то я решил, что у нас $p_i$ в сумме равные единице - это вероятности и все положительны. А в условии этого явно не сказано. (Правда, отчего-то подсознательно поставил абсолютную величину).

 
 
 
 Re: У кого-нибудь есть идеи?
Сообщение17.05.2011, 11:03 
Евгений Машеров в сообщении #446642 писал(а):
что-то я решил, что у нас $p_i$ в сумме равные единице - это вероятности и все положительны.

Тогда и бойан, и неверно (для знакопеременных $M_k$).

 
 
 [ Сообщений: 14 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group