2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 12:31 
нужно найти сумму ряда от 1 до бесконечности $ \frac{((3 - \sqrt{5})/2)^n}{n^3}}$
не могу понять как решать, был бы очень благодарен за помощь, ряд сходится по признаку коши, а вот какова сумма...

 
 
 
 Re: Сумма ряда от 1 до бесконечности (((3-sqrt(5))/2)^n)/n^3
Сообщение08.05.2011, 12:33 
Аватара пользователя
Уж не думаете ли Вы, что это проще, чем дзета от трёх записать его в нормальном виде?

 
 
 
 Re: Сумма ряда от 1 до бесконечности (((3-sqrt(5))/2)^n)/n^3
Сообщение08.05.2011, 12:42 
то что в знаменателе дзета от 3 я знаю, но как я понимаю аналитически она вообще не считается, если вы говорите про то что формула набрата не с помощью кода, прощу прощения, я на этом форуме первый раз и не разобрался как вводить понормальному...еще раз извените

 
 
 
 Re: Сумма ряда от 1 до бесконечности (((3-sqrt(5))/2)^n)/n^3
Сообщение08.05.2011, 12:58 
Аватара пользователя
 !  Пожалуйста, исправьте написание формул в соответствии с Правилами.
Здесь рассказано, как набирать формулы (здесь подробнее).
Используйте кнопку Изображение для редактирования своего сообщения.

Тема перемещена из "Помогите решить (М)" в карантин.
Как исправите - пишите сюда, чтобы тему вернули.


-- 08 май 2011, 14:41 --

Возвращено. $ \sum\limits_{n=1}^\infty\dfrac{(3 - \sqrt{5})^n}{2^n n^3}}$

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 13:56 
Vlad1992, к Вашему сведению, дзета-функция от нечетных чисел больших 1, на сегодняшний день неизвестно через что выражается (если выражается). Лишь недавно Апери было доказано, что $\zeta (3)$ - иррациональное число.
http://ru.wikipedia.org/wiki/%D0%9F%D0% ... 1%80%D0%B8

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 14:19 
ну я это знаю, и статью я читал....но как такой ряд то считать....видимо в ответе должна эта дзета функция остаться...

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 15:23 
Vlad1992 в сообщении #443513 писал(а):
ну я это знаю, и статью я читал....но как такой ряд то считать....видимо в ответе должна эта дзета функция остаться...

Действительно, ответ таков$4/5\,\zeta  \left( 3 \right) +1/15\,{\pi }^{2}\ln  \left( 3/2-1/2\,
\sqrt {5} \right) -1/12\, \left( \ln  \left( 3/2-1/2\,\sqrt {5}
 \right)  \right) ^{3}
$ (это Maple). Вот похожий пример, но попроще:
$$
\sum_{k=0}^\infty \frac{(\sqrt{2}-1)^{2k+1}}{(2k+1)^2}.
$$
Имеет смысл посмотреть http://en.wikipedia.org/wiki/Polylogarithm

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:18 
ответ я тоже получал в вольфраме...но как его получить решение?

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:28 
Подставить вместо скобки в числителе $x$ и дифференцировать несколько раз.
Разбить результат на несколько более простых рядов и, при необходимости, дифференцировать ещё.

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:33 
venco в сообщении #443584 писал(а):
Подставить вместо скобки в числителе $x$ и дифференцировать несколько раз.
Разбить результат на несколько более простых рядов и, при необходимости, дифференцировать ещё.

А Вас не смущает то, что $x$ очень специфический (полагаю, вряд ли можно взять здесь произвольную квадратичную иррациональность)?

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:44 
venco в сообщении #443584 писал(а):
Подставить вместо скобки в числителе $x$ и дифференцировать несколько раз.
Разбить результат на несколько более простых рядов и, при необходимости, дифференцировать ещё.

Угу, я там застрял на уравнении $f'(x) = - \frac{1}{x} \int \frac{\ln (1-x)}{x}dx$

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:52 
Здесь, скорее всего, нужно смотреть всякие тождества с ди- и полилогарифмами.

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:54 
согласен, но в интернете почти ничего нет по данной теме...

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:57 
Vlad1992 в сообщении #443599 писал(а):
согласен, но в интернете почти ничего нет по данной теме...

Как же нет? А в wiki куча ссылок? Надо искать.

 
 
 
 Re: Сумма ряда от 1 до бесконечности
Сообщение08.05.2011, 16:59 
получается у меня полилогорифм от того что в скобках с индексом 3, но это опять же только в вольфрам вводить...как это нормально считать я не знаю....

 
 
 [ Сообщений: 26 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group