2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Мера множества точек с N нулями в десятичном разложении
Сообщение07.01.2011, 05:17 
Здравствуйте!
У меня есть несколько вопросов, которые я хотел бы решить, проконсультировавшись с участниками форума.

Вот есть задача, где требуется определить меру множества точек из (0; 1), у которых при разложении в десятичную дробь встречается последовательность из N нулей.
Насколько я понимаю, мера любого ограниченного счётного множества есть 0. Наше множество ограничено 0 и 1. Как выяснить, является ли это множество счётным? Если да, то получается, что ответ в моей задаче - 0. А если нет, то каким путём мне решить мою задачу? Может, я изначально неправильно решаю?

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 07:50 
Аватара пользователя
Alladin в сообщении #396175 писал(а):
мера любого ограниченного счётного множества есть 0

как и неограниченного счетного

Alladin в сообщении #396175 писал(а):
каким путём мне решить мою задачу?

Если $A_k$ -- множество чисел, у которых в десятичной записи $N$ нулей от $k+1$-го разряда до $k+N$-го, то меру такого множества $a_k=\mu(A_k)$ найти легко. Осталось сообразить, какую последовательность составить из чисел $\{a_k\}$ чтобы ее предел был искомой мерой

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 10:33 
Я правильно понимаю, что множество нужных мне точек есть 0.000..1, 0.000..2, ... , 0.000..9, ... , 0.001, 0.002, ... , 0.009, 0.01, 0.02, ... , 0.09?

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 10:42 
Исправил, Null похоже прав - не буду смущать ТС.

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 10:47 
Ваши множества пересекаются и мера их постоянна.

По-моему тут ответ 1.

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 11:16 
Единиииииица.
Интересно, насколько сразу это следует из УЗБЧ.

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 11:17 
Null в сообщении #396202 писал(а):
Ваши множества пересекаются и мера их постоянна.

По-моему тут ответ 1.

Можно ли чуть подробнее? Почему пересекаются?

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 12:05 
Аватара пользователя
Null в сообщении #396202 писал(а):
По-моему тут ответ 1.

Вы считаете, что наугад взятое из интервала число с вероятностью 1 содержит в десятичной записи сколь угодно длинную последовательность нулей?

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 12:32 
Alladin в сообщении #396199 писал(а):
Я правильно понимаю, что множество нужных мне точек есть 0.000..1, 0.000..2, ... , 0.000..9, ... , 0.001, 0.002, ... , 0.009, 0.01, 0.02, ... , 0.09?

Давайте я попробую порассуждать. Если моё предположение (цитата) верно, то не будет ли мера равняться 0.08+0.008+... = 0.088(8)?

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 12:53 
paha в сообщении #396230 писал(а):
Null в сообщении #396202 писал(а):
По-моему тут ответ 1.

Вы считаете, что наугад взятое из интервала число с вероятностью 1 содержит в десятичной записи сколь угодно длинную последовательность нулей?

Это же вроде инуитивно понятно. Бросаем кубик с десятью гранями, и ждем, пока подряд $N$ нулей не выпадет. 100% дождемся. И так для любого $N$.

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 12:54 
Padawan в сообщении #396246 писал(а):
paha в сообщении #396230 писал(а):
Null в сообщении #396202 писал(а):
По-моему тут ответ 1.

Вы считаете, что наугад взятое из интервала число с вероятностью 1 содержит в десятичной записи сколь угодно длинную последовательность нулей?

Это же вроде инуитивно понятно. Бросаем кубик с десятью гранями, и ждем, пока подряд $N$ нулей не выпадет. 100% дождемся. И так для любого $N$.

Только у меня не теория вероятности, а теория функций действительных переменных :-)

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 12:57 
Это наводящее соображение. Хотя его можно и строго оформить. Только надо специалистов по теории вероятностей подождать, чтобы они изоморфизм между вероятностными пространствами построили и все строго обосновали.

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 13:03 
Alladin в сообщении #396240 писал(а):
Alladin в сообщении #396199 писал(а):
Я правильно понимаю, что множество нужных мне точек есть 0.000..1, 0.000..2, ... , 0.000..9, ... , 0.001, 0.002, ... , 0.009, 0.01, 0.02, ... , 0.09?

Давайте я попробую порассуждать. Если моё предположение (цитата) верно, то не будет ли мера равняться 0.08+0.008+... = 0.088(8)?

А всё-таки что насчёт двух моих соображений?

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение07.01.2011, 13:09 
О, думаете ответить на его вопрос через теорию множеств сложнее, чем показывать эквивалентность пространства последовательностей выпадения честного (равномерно распределенного) 10гранного кубика? Думаю все таки через теорию множеств - посчитать меры выкинутых подмножеств.
2Alladin
У Вас не получится 1.

 
 
 
 Re: Несколько вопросов по теории функции и меры
Сообщение08.01.2011, 08:49 
Gortaur в сообщении #396253 писал(а):
О, думаете ответить на его вопрос через теорию множеств сложнее, чем показывать эквивалентность пространства последовательностей выпадения честного (равномерно распределенного) 10гранного кубика? Думаю все таки через теорию множеств - посчитать меры выкинутых подмножеств.
2Alladin
У Вас не получится 1.

Мера выкинутых подмножеств есть 0.91?

 
 
 [ Сообщений: 38 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group