1) Исследовать на абсолютную и условную сходимость
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fsY-rqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca
% GGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWk
% caaIXaaaaaqaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniabgg
% HiLdGccaGGOaWaaSaaaeaacaaIYaGaamOBaaqaaiaaikdacaWGUbGa
% ey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbWaaWbaaWqabe
% aacaaIYaaaaaaaaaa!4A14!
\[\sum\limits_{n = 1}^\infty {{{( - 1)}^{n + 1}}} {(\frac{{2n}}{{2n + 1}})^{{n^2}}}\]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fsY-rqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaaca
% GGOaGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaad6gacqGHRaWk
% caaIXaaaaaqaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniabgg
% HiLdGccaGGOaWaaSaaaeaacaaIYaGaamOBaaqaaiaaikdacaWGUbGa
% ey4kaSIaaGymaaaacaGGPaWaaWbaaSqabeaacaWGUbWaaWbaaWqabe
% aacaaIYaaaaaaaaaa!4A14!
\[\sum\limits_{n = 1}^\infty {{{( - 1)}^{n + 1}}} {(\frac{{2n}}{{2n + 1}})^{{n^2}}}\]$](https://dxdy-03.korotkov.co.uk/f/2/3/1/2314128e9cb0bbf80137e1ff686eecd082.png)
.
Предел модуля ряда в признаке Коши равен 1 ,больше тут вроде ничего применить нельзя. Могу ли я сказать, что ряд расходится, так как его предел равен 1?
2)
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fsY-rqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada
% Wcaaqaaiaad6gacqGHRaWkcaaIXaaabaWaaOaaaeaacaWGUbaaleqa
% aOGaey4kaSIaamyAaiaad6gaaaaaleaacaWGUbGaeyypa0JaaGymaa
% qaaiabg6HiLcqdcqGHris5aaaa!4264!
\[\sum\limits_{n = 1}^\infty {\frac{{n + 1}}{{\sqrt n + in}}} \]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fsY-rqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada
% Wcaaqaaiaad6gacqGHRaWkcaaIXaaabaWaaOaaaeaacaWGUbaaleqa
% aOGaey4kaSIaamyAaiaad6gaaaaaleaacaWGUbGaeyypa0JaaGymaa
% qaaiabg6HiLcqdcqGHris5aaaa!4264!
\[\sum\limits_{n = 1}^\infty {\frac{{n + 1}}{{\sqrt n + in}}} \]$](https://dxdy-04.korotkov.co.uk/f/7/8/e/78e7d6992116c7a6d5b3e4dfcc50d1ea82.png)
. Упрощаю:
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fsY-rqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaaabaWaaOaaaeaacaWGUbaaleqaaaaaaaa!375B!
\[\frac{1}{{\sqrt n }}\]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fsY-rqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaaabaWaaOaaaeaacaWGUbaaleqaaaaaaaa!375B!
\[\frac{1}{{\sqrt n }}\]$](https://dxdy-01.korotkov.co.uk/f/4/5/4/454eb5874cc8b4e8e0bd3b968b73cc3382.png)
я могу считать расходящимся, так как 1/2<1. Как можно учесть мнимую часть?