Парадокс: бесконечномерную интуицию развить проще, чем 4-мерную.
Ну, кому как. Мне, например, оказалось 4-мерную проще (
-мерную так до конца и не развил).
-- 10.12.2010 17:30:38 --Но хочется (хотя бы немного) развить "геометрическую" интуицию, т. е. не просто чисто механическим путём получать какие-то выводы, рассматривая линейные пространства, СЛАУ и др., а геометрически: так же как я могу интуитивно представить, что две (2-хмерные) плоскости в (3-хмерном) пространстве пересекаются по прямой или не пересекаются вообще -- без всякой линейной алгебры.
Я сначала подумал, что мой ответ полностью покрывается ответом
Padawan, но после этих слов могу что-то посоветовать. Решайте не просто задачи, а те, которые ставите сами себе. Конкретно, начните с какой-то геометрической формулировки: разобраться, как могут быть взаимно расположены две 2-плоскости в 4-пространстве. Потом аккуратно переведите её на язык алгебры. Решите её методами алгебры. И потом тот результат, который вы получили, снова "геометризуйте", переводите на язык объектов и образов. Постепенно у вас появится ощущение, что вы можете "видеть" 4-мерное пространство. Вы будете знать, как ведут себя 4-мерные объекты. Разбираясь таким образом, вы привыкнете к их свойствам, и вам не придётся их с трудом каждый раз рассчитывать, а можно будет просто вспоминать, всё легче и легче. Тогда это и будет интуиция.
По поводу визуализации. Мне помогали приёмы, аналогичные тому, как на плоской бумаге или экране изображают трёхмерные объекты:
- проекция. Лучше всего проекция сбоку, по диагонали, из какого-то общего положения, аналогичная чертёжной аксонометрической. При этом выгодно натренироваться "вертеть" 4-мерные объекты, сохраняя их форму, но беря проекцию под разными углами.
- "размеченная" или "раскрашенная" проекция. В этом варианте все точки 4-мерного объекта (или лучше рамки, которая его очерчивает) проецируются на 3-мерное пространство, но дополнительно для каждой точки кодируется её 4-я координата, "4-высота". Например, положительные координаты могут менять цвет точки от чёрного (серого) до красного, а отрицательные - до синего. Или можно представлять себе точки с
как чёткие, "резкие", а точки с другими
как размытые, "нерезкие", причём чем больше "4-высота", тем меньше резкость. Или какой-то ещё вариант, который вам придумается.
- сечение. Тут всё проще всего: мы видим не всё 4-пространство, а только то, что пересекается с некоторой нашей 3-плоскостью. Его удобно применять не само по себе, а в сочетании с предыдущими методами "проекции".