Всем известна история про Ахиллеса и черепаху. Если расстояние между Ахиллесом и черепахой равно 1м, то для того, чтобы ему дойти до черепахи нужно пройти половину пути, т.е.

м, затем половину половины пути т.е.

м, и т.д. Парадокс был разрешён когда нашли сумму ряда

и получилось, что если на половину пути он затрачивает половину минуты, то он дойдет до черепахи за 1 минуту (хотя изначально считалось невозможным пройти бесконечное количество отрезков за конечное время). После того, как этот парадокс был разрешён придумали другой парадокс.
Имеется лампа во включенном состоянии. Через

минуты, она выключается, затем, через

минуты она опять включается и т.д. В каком состоянии будет лампа через 1 минуту? Парадокс заключается в том, что задача похожа на поиск предела

(лампа выключается

, лампа включается

) которого не существует. Хотя из постановки задачи этот предел должен существовать (эксперимент будет длиться только одну минуту). Разрешён ли данный парадокс?