2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 35  След.
 
 Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 13:13 
:D Случайно встрял в тему "Могут ли машины мыслить?". И сформулировал контрвопрос "Могут ли люди мыслить?".

:roll: А потом понял, что этот вопрос заслуживает особого рассмотрения. Чтобы не размазаться слишком широко (и не погрязнуть в рассмотрении множества многовековых заблуждений человечества), предлагаю рассмотреть этот вопрос на примере оснований математики. Таким образом, предлагаю поговорить о парадоксах (Рассела и др.), теореме Тарского, теореме Геделя и т.д. и т.п. (подобных дискуссионных темы здесь не менее десятка).

:wink: Для затравки позволю высказать следующий вопрос по поводу парадокса Расселя - а почему определение "множества всех множеств, не являющихся членами самих себя" вызывает смущение у людей? Ведь на самом деле и ежу понятно, что это определение некорректно!

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 13:52 
vek88
Смущение у людей вызывает другое:множество всех тех и только тех множеств,которые не являются элементами самих себя!И что такое некорректное определение?

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 14:06 
Аватара пользователя
Все эти темы надоели до смерти. Тем более, вопросы типа "почему ... смущает", не имеющие ни малейшего отношения ни к математике, ни к сути дела.

Вы можете сказать что-нибудь о том, что означает утверждение "это определение некорректно"?

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 14:17 
Lyosha в сообщении #277165 писал(а):
vek88
Смущение у людей вызывает другое:множество всех тех и только тех множеств,которые не являются элементами самих себя!

:P Предлагаю не придираться к словам. Хотя бы потому, что Вы меня прекрасно поняли.
Lyosha в сообщении #277165 писал(а):
vek88
И что такое некорректное определение?

:?: А вот это серьезный вопрос. Однако в контексте вопроса "Могут ли люди мыслить" начну издалека. Итак, если я попрошу кого-то решить систему уравнений $x=0, x=1$, мне бодро ответят, что эта система не имеет решения. Ведь так?

:roll: Но почему же тогда смущает логическое уравнение: $A$ истинно тогда и только тогда, когда $A$ ложно? Ведь ежу понятно, что мы не можем приписать логической переменной $A$ ни одного из двух логических значений истина/ложь. Или я не прав?

-- Вс янв 03, 2010 15:28:27 --

Someone в сообщении #277170 писал(а):
Все эти темы надоели до смерти. Тем более, вопросы типа "почему ... смущает", не имеющие ни малейшего отношения ни к математике, ни к сути дела.

:lol: Гильберт в 1925 году писал: "Надо согласиться, что состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо." Мне кажется, что это даже не смущение, а растерянность. Или Гильберт нам не указ? И к математике не имеет отношения?

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 14:31 
Аватара пользователя
vek88 в сообщении #277172 писал(а):
Хотя бы потому, что Вы меня прекрасно поняли

Если бы поняли - не придирались бы. Вы ведь завели разговор об основаниях
vek88 в сообщении #277172 писал(а):
Однако в контексте вопроса "Могут ли люди мыслить" начну издалека. Итак, если я попрошу кого-то решить систему уравнений $x=0,\ x=1$

То скорее всего Вас отправят туда, откуда Вы начали. Ждать Вам долго не придётся - троллинг здесь не поощряется.

-- Вс янв 03, 2010 14:34:15 --

Этого ещё не было когда я отвечал
bot в сообщении #277178 писал(а):
мне бодро ответят, что эта система не имеет решения. Ведь так?

Как видите - не угадали.

ЗЫ. Глюк какой-то - бодрый ответ предсказывал vek88

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 14:45 
bot в сообщении #277178 писал(а):
-- Вс янв 03, 2010 14:34:15 --
Этого ещё не было когда я отвечал

:lol: А вы не торопитесь и не суетитесь.

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 15:12 
vek88 в сообщении #277172 писал(а):
:roll: Но почему же тогда смущает логическое уравнение: $A$ истинно тогда и только тогда, когда $A$ ложно? Ведь ежу понятно, что мы не можем приписать логической переменной $A$ ни одного из двух логических значений истина/ложь. Или я не прав?

А это уже,наверное,парадокс лжеца?

Почему бы Вам не поговорить о парадоксе Рассела в соответствующей теме?

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 15:30 
Аватара пользователя
vek88 в сообщении #277172 писал(а):
Гильберт в 1925 году писал ...


С тех пор прошло 85 лет. Вы полагаете, что математики до сих пор находятся в растерянности?

bot в сообщении #277178 писал(а):
Глюк какой-то


Вы выделили текст в одном сообщении, а кнопочку Изображение нажали на другом.

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 15:33 
Lyosha в сообщении #277187 писал(а):
vek88 в сообщении #277172 писал(а):
:roll: Но почему же тогда смущает логическое уравнение: $A$ истинно тогда и только тогда, когда $A$ ложно? Ведь ежу понятно, что мы не можем приписать логической переменной $A$ ни одного из двух логических значений истина/ложь. Или я не прав?

А это уже,наверное,парадокс лжеца?

Почему бы Вам не поговорить о парадоксе Рассела в соответствующей теме?

:? Вовсе нет. Ведь в качестве $A$ можно понимать выражение из парадокса Рассела $R \in R$

8-) Но дело не в парадоксе Рассела, а в мыслительных способностях людей. Для иллюстрации же оных я выбрал основания математики. Но не корысти ради, т.е. для пропаганды того или иного подхода к основаниям математики. А токмо для иллюстрации склонности людей к заблуждениям в части создания искусственных трудностей с последующим героическим их преодолением.

:shock: И еще раз прошу - не торопитесь. Вопрос серьезный - призываю соответственно настроится. И давайте волноваться поэтапно.

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 15:41 
vek88
А как Вы думаете,будет ли переменная $A$ простым высказыванием?

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 15:57 
Someone в сообщении #277189 писал(а):
vek88 в сообщении #277172 писал(а):
Гильберт в 1925 году писал ...

С тех пор прошло 85 лет. Вы полагаете, что математики до сих пор находятся в растерянности?

:x А Вам известно очевидное и простое изложение оснований математики? Что-то я не заметил ничего подобного на нашем форуме. А вот путаницы вижу много.

-- Вс янв 03, 2010 17:12:38 --

Lyosha в сообщении #277196 писал(а):
vek88
А как Вы думаете,будет ли переменная А простым высказыванием?

:roll: А какое же это имеет значение? Я ведь пытался проиллюстрировать очевидную вещь, а именно.

Если мы определяем нечто (множества или какие-либо иные объекты), и при этом хотим оставаться в пределах классической логики (любое высказываение об определяемых объектах либо истинно, либо ложно), то надо формулировать эти определения корректно (чтобы не получить неразрешимых выражений).

:mrgreen: В этом смысле определение $A$ некорректно, как и определение из парадокса Рассела.

:wink: Контрольный вопрос: что-нибудь уже понятно о корректности определений? Или люди жаждут крови. Я хотел сказать больше формализма.

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 16:34 
vek88 в сообщении #277198 писал(а):
Lyosha в сообщении #277196 писал(а):
vek88
А как Вы думаете,будет ли переменная $A$ простым высказыванием?

:roll: А какое же это имеет значение? Я ведь пытался проиллюстрировать очевидную вещь, а именно.

Если мы определяем нечто (множества или какие-либо иные объекты), и при этом хотим оставаться в пределах классической логики (любое высказываение об определяемых объектах либо истинно, либо ложно), то надо формулировать эти определения корректно (чтобы не получить неразрешимых выражений).

:mrgreen: В этом смысле определение $A$ некорректно, как и определение из парадокса Рассела.

:wink: Контрольный вопрос: что-нибудь уже понятно о корректности определений? Или люди жаждут крови. Я хотел сказать больше формализма.

Ну,мне кажется,что высказывание о множестве Рассела не является простым.В соответствующей теме я высказал об этом своё дилетантское мнение.

А у определения,как мне представляется,другая функция:короткое наименованее длинно описываемой ситуации(объекта).

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 17:12 
Lyosha в сообщении #277207 писал(а):
А у определения, как мне представляется, другая функция: короткое наименованее длинно описываемой ситуации(объекта).

:| Рад, что меня не втянули в какой-нибудь формализм. А если неформально, так ведь мы с Вами об одном и том же. Ведь если отвлечься от различных формализмов, определение содержит две части: (1) описание ситуации (объекта) и (2) и некоторую вновь определяемую ситуацию (свойство, объект, множество). Другими словами, посылки и следствие - если выполнены (истинны) посылки, то выполнено (истинно) и следствие (имеет место определяемая ситуация, некий элемент принадлежит определяемому множеству и т.д.).

Пример 1. Я определяю множество $A$ определением: $A \in A$ если $A \notin A$. Но оно не определяет множества, поскольку я не могу приписать значения истина/ложь выражению $A \in A$.

Пример 2. Предположим, что каким-то образом я уже определил некие множества (знак $R$ в этих определениях не использовался). И с этими множествами у меня все было в порядке в том смысле, что каждое высказывание об этих множествах было истинно или ложно. А потом пришел уважаемый Бертран Рассел и придумал себе трудность, т.е. определил еще одно множество $R$ определением: $x \in R$ если $x \notin R$. Но оно не определяет множества, поскольку мы не можем приписать значения истина/ложь выражению $R \in R$.

Таким образом, господа!
(1) Или уходите из классической логики, допустив неразрешимые утверждения, следовательно отказавшись от теории множеств в классическом понимании. С абстрактной точки зрения такая теория множеств имеет право на существование. Однако не думаю, что она интересна математикам. Хотя впрочем, кто ж это знает?
(2) Или пусть все будет как было в старой наивной теории множеств ... , но ограничьте себя корректными определениями вводимых Вами множеств (или полными в смысле либо ложь, либо истина и третьего не дано).

Кстати, наличие парадокса в некоторой системе определений, означает некорректность этой системы определений.

Большое заблуждение людей состояло в том, что здесь пытались и пытаются увидеть что-то другое, страшное и серьезное.

:wink: С уважением,
vek88

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 17:17 
Аватара пользователя
vek88 в сообщении #277198 писал(а):
А Вам известно очевидное и простое изложение оснований математики?


Излагайте.

Кстати, "What are you?"

vek88 в сообщении #277190 писал(а):
Но дело не в парадоксе Рассела, а в мыслительных способностях людей. Для иллюстрации же оных я выбрал основания математики. Но не корысти ради, т.е. для пропаганды того или иного подхода к основаниям математики. А токмо для иллюстрации склонности людей к заблуждениям в части создания искусственных трудностей с последующим героическим их преодолением.


Вы не ошиблись форумом?

 
 
 
 Re: Основания математики - элементарное рассмотрение
Сообщение03.01.2010, 17:52 
vek88 в сообщении #277216 писал(а):
Lyosha в сообщении #277207 писал(а):
А у определения, как мне представляется, другая функция: короткое наименованее длинно описываемой ситуации(объекта).

:| Рад, что меня не втянули в какой-нибудь формализм. А если неформально, так ведь мы с Вами об одном и том же. Ведь если отвлечься от различных формализмов, определение содержит две части: (1) описание ситуации (объекта) и (2) и некоторую вновь определяемую ситуацию (свойство, объект, множество). Другими словами, посылки и следствие - если выполнены посылки, то выполнено и следствие (имеет место определяемая ситуация, некий элемент принадлежит определяемому множеству и т.д.).

Пример 1. Я определяю множество $A$ определением: $A \in A$ если $A \notin A$.

Пример определения.Сторона прямоугольного треугольника,лежащая напротив прямого угла(и чтобы не таскать за собой эту длинную фразу,говорят...),называется гипотенузой.

В пункте (2) не может быть "вновь определяемую",ибо в (1) определяемый термин уже описан!

 
 
 [ Сообщений: 512 ]  На страницу 1, 2, 3, 4, 5 ... 35  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group