2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 О кривых 3-го и 4-го порядка (литература)
Сообщение08.10.2009, 11:56 
Не могли бы Вы подсказать литературу, где описывается:
1. Аналитическая формула угла поворота кубической формы.
2. Форма 4 степени. К сожалению не знаю ее названия.
3. Может быть существует литература по соотвествующим инвариантам?

 
 
 
 Re: Формы сложнее квадратичной
Сообщение08.10.2009, 12:28 
Если не ошибаюсь, у Манина была книга про кубические формы.

 
 
 
 Re: Формы сложнее квадратичной
Сообщение08.10.2009, 13:13 
Аватара пользователя
V.V., наверное эта:
Манин Ю. И. Кубические формы: алгебра, геометрия, арифметика,— М.: Физматлит, 1972.

http://www.krelib.com/matematika/1445

 
 
 
 Re: Формы сложнее квадратичной
Сообщение08.10.2009, 13:47 
Аватара пользователя
Смогоржевский А.С., Столова Е.С.
Справочник по теории плоских кривых третьего порядка (М., Физматгиз, 1961)

 
 
 
 Re: Формы сложнее квадратичной
Сообщение08.10.2009, 18:51 
gris, наверное. :)

 
 
 
 Re: Формы сложнее квадратичной
Сообщение09.10.2009, 12:00 
Спасибо всем откликнувшимся. А, все таки. существует ли литература по плоским кривым четвертого порядка? Исследовать эллипс проще, чем параболу.

Прошу Вас не использовать красный цвет (см. Правила). /АКМ

 
 
 
 А.А.Савёлов в V-й гл. книги 'Плоские кривые' (стр.91) писал
Сообщение09.10.2009, 12:42 
"Общая теория кривых 4-го порядка и вопросы их классификации слабо развиты по сравнению с теорией кривых 3-го порядка.
Одна из ранних попыток классификации этих кривых связывается с именем Варинга (1792), который разделил их на 12 классов, объединяющих 84551 кривых частного вида."

-- 09 окт 2009, 13:45 --

Gal в сообщении #250353 писал(а):
Исследовать эллипс проще, чем параболу.
???

Кстати, Gal, ровно сейчас по телику показывают Ваши проблемы. Что Вам стоит через Каменскую выйти на её мужа Чистякова, который всё это знает? :D

 
 
 
 Re: Формы сложнее квадратичной
Сообщение10.10.2009, 15:31 
Не скажу точную ссылку, но попадалась мне у Гильберта
такая литература. Причем как помню, там же указывались специальные названия для форм малых степеней (до 6 вроде-бы).

 
 
 
 Re: Формы сложнее квадратичной
Сообщение10.10.2009, 15:37 
Алексей К. в сообщении #250365 писал(а):
???

Ну в смысле его проще нарисовать. Два гвоздика, верёвочка, карандашик...

 
 
 
 Re: Формы сложнее квадратичной
Сообщение10.10.2009, 16:07 
А вывести это формулу сложно??? Берем формулу поворота точки вокруг начала координат и подставляем.

 
 
 
 Re: Формы сложнее квадратичной
Сообщение12.10.2009, 08:02 
Проблема не в том, чтобы найти численное значение угла интерполируемой функции, а аналитическую закономерность и вообще, что считать собственным углом наклона трансформированной кривой более сложной, чем коническое сечение.
А у Каменской надо спросить. Кто же дал им эту задачу.

 
 
 
 Re: Формы сложнее квадратичной
Сообщение12.10.2009, 15:23 
Gal в сообщении #250028 писал(а):
Не могли бы Вы подсказать литературу, где описывается:
1. Аналитическая формула угла поворота кубической формы.
Gal в сообщении #251047 писал(а):
Проблема не в том, чтобы найти численное значение угла интерполируемой функции, а аналитическую закономерность и вообще, что считать собственным углом наклона трансформированной кривой более сложной, чем коническое сечение.
Всё таки следует заметить, что выражаетесь Вы больно непонятно. "Угол интерполируемой функции", по-моему, ни в какие ворота не лезет. По первому пункту можно догадаться, что речь идёт об угле поворота системы координат, аналогичном углу, возникающему при приведении квадратичной формы к каноническому виду (либо к главным осям).
Но Вы уверены, что для третьего порядка существует некое "каноническое уравнение"? У того же Савёлова указано 7 классов кривых, каждый со своим уравнением. И "главные оси" надо как-то специально определять (там чаще обращаются к асимптотам).

 
 
 
 Re: Формы сложнее квадратичной
Сообщение13.10.2009, 09:24 
Спасибо, понятно. Поскольку нет канона, нет и собственного базиса. За тезаурус извините, классического математического образования, к сожалению, не имею.
Можно ли тогда считать каноническим уравнением:
1. Определена параметрическая система уравнений кривой по геометрическим построениям движения точки с использованием тригонометрических функций;
2. Осуществлен переход от полярных координат к декартовым, таким образом, чтобы уравнение не содержало тригонометрических зависимостей и было вида (1) стр. 44 Савелова?
Вообще, каноническое уравнение относится к алгебраическим, неалгебраическим или одновременно обоим классам геометрии?

 
 
 
 Re: Формы сложнее квадратичной
Сообщение13.10.2009, 10:06 
Я точно помню, что когда у меня был доступ к библиотеке, я интересовался термином "каноническое уравнение". А именно, я предполагал, что за этим стоит
либо какой-то чисто исторический аспект;
либо максимальная простота (необходимый минимум параметров формы, если речь идёт об уравнении кривой), что достигается специальным выбором системы координат;
либо оба упомянутых свойства.
Но в Математической Энциклопедии (5 томов под ред. Виноградова) я такой статьи НЕ нашёл.
Наверное, кан. ур. эллипса $x^2/a^2+y^2/b^2=1$, переписанное в виде $b^2x^2+a^2y^2-a^2b^2=0$, уже перестаёт быть каноническим.
Полагаю, Вам просто надо НЕ пользоваться этим термином в данном случае, чтобы не вводить в заблуждение собеседников (здешних или будущих).
Уравнение от Савёлова
$$Ax^3+3Bx^2y+3Cxy^2+Dy^3+3Ex^2+6Fxy+3Gy^2+3Hx+3Ky+L=0\qquad\eqno(1)$$тоже к таковым не отностится: это общее уравнение, как у него и сказано. Выбором системы координат число коэффициентов может быть умешьшено (7 вариантов, которые Вы видели).

У Вас могут быть:
  • параметрическое уравнение в полярныx координатах $[r(t),\varphi(t)]$;
  • явное $r=f(\varphi)$ или неявное $P(r,\varphi)=0$ уравнение в полярныx координатах;
  • параметрическое уравнение в декартовых координатах $[x(t),y(t)]$;
  • явное или неявное $F(x,y)=0$ уравнение в декартовых координатах.

Но это чисто о словоупотреблении. Ща пересмотрю тему, были ли другие вопросы. Глубинами теории не интересовался.

 
 
 
 Re: О кривых 3-го и 4-го порядка (литература)
Сообщение09.06.2011, 17:36 
добились успехп в кривых четвёртого порядка?
просто тоже ими интересуюсь..

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group